Visual Servoing Platform  version 3.4.0
servoSimuAfma6FourPoints2DCamVelocity.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See http://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Simulation of a 2D visual servoing using 4 points with cartesian
33  * coordinates as visual feature.
34  *
35  * Authors:
36  * Fabien Spindler
37  *
38  *****************************************************************************/
39 
56 #include <visp3/core/vpConfig.h>
57 #include <visp3/core/vpDebug.h>
58 
59 #if ((defined(_WIN32) && !defined(WINRT_8_0)) || defined(VISP_HAVE_PTHREAD)) \
60  && (defined(VISP_HAVE_X11) || defined(VISP_HAVE_OPENCV) || defined(VISP_HAVE_GDI)) \
61  && (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
62 
63 // We need to use threading capabilities. Thus on Unix-like
64 // platforms, the libpthread third-party library need to be
65 // installed. On Windows, we use the native threading capabilities.
66 
67 #include <stdio.h>
68 #include <stdlib.h>
69 
70 #include <visp3/core/vpCameraParameters.h>
71 #include <visp3/core/vpHomogeneousMatrix.h>
72 #include <visp3/core/vpImage.h>
73 #include <visp3/core/vpImagePoint.h>
74 #include <visp3/core/vpIoTools.h>
75 #include <visp3/core/vpMath.h>
76 #include <visp3/core/vpMeterPixelConversion.h>
77 #include <visp3/gui/vpDisplayGDI.h>
78 #include <visp3/gui/vpDisplayGTK.h>
79 #include <visp3/gui/vpDisplayX.h>
80 #include <visp3/io/vpParseArgv.h>
81 #include <visp3/robot/vpSimulatorAfma6.h>
82 #include <visp3/visual_features/vpFeatureBuilder.h>
83 #include <visp3/visual_features/vpFeaturePoint.h>
84 #include <visp3/vs/vpServo.h>
85 
86 // List of allowed command line options
87 #define GETOPTARGS "cdh"
88 
89 void usage(const char *name, const char *badparam);
90 bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display);
91 
100 void usage(const char *name, const char *badparam)
101 {
102  fprintf(stdout, "\n\
103 Tests a control law with the following characteristics:\n\
104  - eye-in-hand control\n\
105  - articular velocity are computed\n\
106  - servo on 4 points,\n\
107  - internal and external camera view displays.\n\
108  \n\
109 SYNOPSIS\n\
110  %s [-c] [-d] [-h]\n", name);
111 
112  fprintf(stdout, "\n\
113 OPTIONS: Default\n\
114  -c\n\
115  Disable the mouse click. Useful to automaze the \n\
116  execution of this program without humain intervention.\n\
117  \n\
118  -d \n\
119  Turn off the display.\n\
120  \n\
121  -h\n\
122  Print the help.\n");
123 
124  if (badparam)
125  fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
126 }
139 bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display)
140 {
141  const char *optarg_;
142  int c;
143  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
144 
145  switch (c) {
146  case 'c':
147  click_allowed = false;
148  break;
149  case 'd':
150  display = false;
151  break;
152  case 'h':
153  usage(argv[0], NULL);
154  return false;
155  break;
156 
157  default:
158  usage(argv[0], optarg_);
159  return false;
160  break;
161  }
162  }
163 
164  if ((c == 1) || (c == -1)) {
165  // standalone param or error
166  usage(argv[0], NULL);
167  std::cerr << "ERROR: " << std::endl;
168  std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
169  return false;
170  }
171 
172  return true;
173 }
174 
175 int main(int argc, const char **argv)
176 {
177  try {
178  bool opt_click_allowed = true;
179  bool opt_display = true;
180 
181  // Read the command line options
182  if (getOptions(argc, argv, opt_click_allowed, opt_display) == false) {
183  exit(-1);
184  }
185 
186  // We open two displays, one for the internal camera view, the other one for
187  // the external view, using either X11, GTK or GDI.
188 #if defined VISP_HAVE_X11
189  vpDisplayX displayInt;
190 #elif defined VISP_HAVE_GDI
191  vpDisplayGDI displayInt;
192 #elif defined VISP_HAVE_OPENCV
193  vpDisplayOpenCV displayInt;
194 #endif
195 
196  vpImage<unsigned char> Iint(480, 640, 255);
197 
198  if (opt_display) {
199  // open a display for the visualization
200  displayInt.init(Iint, 700, 0, "Internal view");
201  }
202 
203  vpServo task;
204 
205  std::cout << std::endl;
206  std::cout << "----------------------------------------------" << std::endl;
207  std::cout << " Test program for vpServo " << std::endl;
208  std::cout << " Eye-in-hand task control, articular velocity are computed" << std::endl;
209  std::cout << " Simulation " << std::endl;
210  std::cout << " task : servo 4 points " << std::endl;
211  std::cout << "----------------------------------------------" << std::endl;
212  std::cout << std::endl;
213 
214  // sets the initial camera location
215  vpHomogeneousMatrix cMo(-0.05, -0.05, 0.7, vpMath::rad(10), vpMath::rad(10), vpMath::rad(-30));
216 
217  // sets the point coordinates in the object frame
218  vpPoint point[4];
219  point[0].setWorldCoordinates(-0.045, -0.045, 0);
220  point[3].setWorldCoordinates(-0.045, 0.045, 0);
221  point[2].setWorldCoordinates(0.045, 0.045, 0);
222  point[1].setWorldCoordinates(0.045, -0.045, 0);
223 
224  // computes the point coordinates in the camera frame and its 2D
225  // coordinates
226  for (unsigned int i = 0; i < 4; i++)
227  point[i].track(cMo);
228 
229  // sets the desired position of the point
230  vpFeaturePoint p[4];
231  for (unsigned int i = 0; i < 4; i++)
232  vpFeatureBuilder::create(p[i], point[i]); // retrieve x,y and Z of the vpPoint structure
233 
234  // sets the desired position of the feature point s*
235  vpFeaturePoint pd[4];
236 
237  // Desired pose
239 
240  // Projection of the points
241  for (unsigned int i = 0; i < 4; i++)
242  point[i].track(cdMo);
243 
244  for (unsigned int i = 0; i < 4; i++)
245  vpFeatureBuilder::create(pd[i], point[i]);
246 
247  // define the task
248  // - we want an eye-in-hand control law
249  // - articular velocity are computed
252 
253  // we want to see a point on a point
254  for (unsigned int i = 0; i < 4; i++)
255  task.addFeature(p[i], pd[i]);
256 
257  // set the gain
258  task.setLambda(0.8);
259 
260  // Declaration of the robot
261  vpSimulatorAfma6 robot(opt_display);
262 
263  // Initialise the robot and especially the camera
266 
267  // Initialise the object for the display part*/
269 
270  // Initialise the position of the object relative to the pose of the
271  // robot's camera
272  robot.initialiseObjectRelativeToCamera(cMo);
273 
274  // Set the desired position (for the displaypart)
275  robot.setDesiredCameraPosition(cdMo);
276 
277  // Get the internal robot's camera parameters
278  vpCameraParameters cam;
279  robot.getCameraParameters(cam, Iint);
280 
281  if (opt_display) {
282  // Get the internal view
283  vpDisplay::display(Iint);
284  robot.getInternalView(Iint);
285  vpDisplay::flush(Iint);
286  }
287 
288  // Display task information
289  task.print();
290 
291  unsigned int iter = 0;
292  vpTRACE("\t loop");
293  while (iter++ < 500) {
294  std::cout << "---------------------------------------------" << iter << std::endl;
295  vpColVector v;
296 
297  // Get the Time at the beginning of the loop
298  double t = vpTime::measureTimeMs();
299 
300  // Get the current pose of the camera
301  cMo = robot.get_cMo();
302 
303  if (iter == 1) {
304  std::cout << "Initial robot position with respect to the object frame:\n";
305  cMo.print();
306  }
307 
308  // new point position
309  for (unsigned int i = 0; i < 4; i++) {
310  point[i].track(cMo);
311  // retrieve x,y and Z of the vpPoint structure
312  vpFeatureBuilder::create(p[i], point[i]);
313  }
314 
315  if (opt_display) {
316  // Get the internal view and display it
317  vpDisplay::display(Iint);
318  robot.getInternalView(Iint);
319  vpDisplay::flush(Iint);
320  }
321 
322  if (opt_display && opt_click_allowed && iter == 1) {
323  // suppressed for automate test
324  std::cout << "Click in the internal view window to continue..." << std::endl;
325  vpDisplay::getClick(Iint);
326  }
327 
328  // compute the control law
329  v = task.computeControlLaw();
330 
331  // send the camera velocity to the controller
333 
334  std::cout << "|| s - s* || " << (task.getError()).sumSquare() << std::endl;
335 
336  // The main loop has a duration of 10 ms at minimum
337  vpTime::wait(t, 10);
338  }
339 
340  // Display task information
341  task.print();
342 
343  std::cout << "Final robot position with respect to the object frame:\n";
344  cMo.print();
345 
346  if (opt_display && opt_click_allowed) {
347  // suppressed for automate test
348  std::cout << "Click in the internal view window to end..." << std::endl;
349  vpDisplay::getClick(Iint);
350  }
351  return EXIT_SUCCESS;
352  }
353  catch (const vpException &e) {
354  std::cout << "Catch a ViSP exception: " << e << std::endl;
355  return EXIT_FAILURE;
356  }
357  return EXIT_SUCCESS;
358 }
359 #elif !(defined(VISP_HAVE_X11) || defined(VISP_HAVE_GTK) || defined(VISP_HAVE_GDI))
360 int main()
361 {
362  std::cout << "You do not have X11, or GDI (Graphical Device Interface) of OpenCV functionalities to display images..." << std::endl;
363  std::cout << "Tip if you are on a unix-like system:" << std::endl;
364  std::cout << "- Install X11, configure again ViSP using cmake and build again this example" << std::endl;
365  std::cout << "Tip if you are on a windows-like system:" << std::endl;
366  std::cout << "- Install GDI, configure again ViSP using cmake and build again this example" << std::endl;
367  return EXIT_SUCCESS;
368 }
369 #elif !(defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
370 int main()
371 {
372  std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
373  return EXIT_SUCCESS;
374 }
375 #else
376 int main()
377 {
378  std::cout << "You do not have threading capabilities" << std::endl;
379  std::cout << "Tip:" << std::endl;
380  std::cout << "- Install pthread, configure again ViSP using cmake and build again this example" << std::endl;
381  return EXIT_SUCCESS;
382 }
383 #endif
VISP_EXPORT int wait(double t0, double t)
Definition: vpTime.cpp:173
void setWorldCoordinates(double oX, double oY, double oZ)
Definition: vpPoint.cpp:113
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
Implementation of an homogeneous matrix and operations on such kind of matrices.
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:490
Display for windows using GDI (available on any windows 32 platform).
Definition: vpDisplayGDI.h:128
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:150
error that can be emited by ViSP classes.
Definition: vpException.h:71
void init(vpImage< unsigned char > &I, int winx=-1, int winy=-1, const std::string &title="")
void track(const vpHomogeneousMatrix &cMo)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
static void flush(const vpImage< unsigned char > &I)
VISP_EXPORT double measureTimeMs()
Definition: vpTime.cpp:126
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:201
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:81
Initialize the velocity controller.
Definition: vpRobot.h:66
vpColVector getError() const
Definition: vpServo.h:278
vpColVector computeControlLaw()
Definition: vpServo.cpp:929
#define vpTRACE
Definition: vpDebug.h:416
static void display(const vpImage< unsigned char > &I)
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
Generic class defining intrinsic camera parameters.
void setLambda(double c)
Definition: vpServo.h:404
Simulator of Irisa&#39;s gantry robot named Afma6.
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:567
static double rad(double deg)
Definition: vpMath.h:110
Implementation of column vector and the associated operations.
Definition: vpColVector.h:130
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:306
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:218