Visual Servoing Platform  version 3.3.0 under development (2020-02-17)
testHistogram.cpp

Test histogram computation.

/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2019 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Test histogram computation.
*
* Authors:
* Souriya Trinh
*
*****************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <visp3/core/vpHistogram.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/io/vpImageIo.h>
#include <visp3/io/vpParseArgv.h>
// List of allowed command line options
#define GETOPTARGS "cdi:t:h"
/*
Print the program options.
\param name : Program name.
\param badparam : Bad parameter name.
\param ipath: Input image path.
*/
void usage(const char *name, const char *badparam, std::string ipath)
{
fprintf(stdout, "\n\
Test histogram.\n\
\n\
SYNOPSIS\n\
%s [-i <input image path>] [-t <nb threads>]\n\
[-h]\n \
", name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
-i <input image path> %s\n\
Set image input path.\n\
From this path read \"Klimt/Klimt.ppm\"\n\
image.\n\
Setting the VISP_INPUT_IMAGE_PATH environment\n\
variable produces the same behaviour than using\n\
this option.\n\
\n\
-t <nb threads>\n\
Set the number of threads to use for the computation.\n\
-h\n\
Print the help.\n\n", ipath.c_str());
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, std::string &ipath, unsigned int &nbThreads)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'i':
ipath = optarg_;
break;
case 't':
nbThreads = (unsigned int)atoi(optarg_);
break;
case 'h':
usage(argv[0], NULL, ipath);
return false;
break;
case 'c':
case 'd':
break;
default:
usage(argv[0], optarg_, ipath);
return false;
break;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], NULL, ipath);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
unsigned int histogramSum(const vpImage<unsigned char> &I, unsigned int nbBins, unsigned int nbThreads)
{
unsigned int sum = 0;
vpHistogram histogram;
histogram.calculate(I, nbBins, nbThreads);
for (unsigned int cpt = 0; cpt < histogram.getSize(); cpt++) {
sum += histogram[cpt];
}
return sum;
}
bool compareHistogram(const vpImage<unsigned char> &I, unsigned int nbBins)
{
vpHistogram histogram_single_threaded;
histogram_single_threaded.calculate(I, nbBins, 1);
vpHistogram histogram_multi_threaded;
histogram_multi_threaded.calculate(I, nbBins, 4);
unsigned int sum = 0;
for (unsigned int cpt = 0; cpt < nbBins; cpt++) {
if (histogram_single_threaded[cpt] != histogram_multi_threaded[cpt]) {
std::cerr << "histogram_single_threaded[" << cpt << "]=" << histogram_single_threaded[cpt]
<< " ; histogram_multi_threaded[" << cpt << "]=" << histogram_multi_threaded[cpt] << std::endl;
return false;
}
sum += histogram_single_threaded[cpt];
}
if (sum != I.getSize()) {
std::cerr << "Sum of histogram is different with the image size!" << std::endl;
return false;
}
return true;
}
int main(int argc, const char **argv)
{
try {
std::string env_ipath;
std::string opt_ipath;
std::string ipath;
std::string filename;
unsigned int nbThreads = 4;
// Get the visp-images-data package path or VISP_INPUT_IMAGE_PATH
// environment variable value
// Set the default input path
if (!env_ipath.empty())
ipath = env_ipath;
// Read the command line options
if (getOptions(argc, argv, opt_ipath, nbThreads) == false) {
exit(-1);
}
// Get the option values
if (!opt_ipath.empty())
ipath = opt_ipath;
// Compare ipath and env_ipath. If they differ, we take into account
// the input path comming from the command line option
if (!opt_ipath.empty() && !env_ipath.empty()) {
if (ipath != env_ipath) {
std::cout << std::endl << "WARNING: " << std::endl;
std::cout << " Since -i <visp image path=" << ipath << "> "
<< " is different from VISP_IMAGE_PATH=" << env_ipath << std::endl
<< " we skip the environment variable." << std::endl;
}
}
// Test if an input path is set
if (opt_ipath.empty() && env_ipath.empty()) {
usage(argv[0], NULL, ipath);
std::cerr << std::endl << "ERROR:" << std::endl;
std::cerr << " Use -i <visp image path> option or set VISP_INPUT_IMAGE_PATH " << std::endl
<< " environment variable to specify the location of the " << std::endl
<< " image path where test images are located." << std::endl
<< std::endl;
exit(-1);
}
//
// Here starts really the test
//
// Create a grey level image
// Load a grey image from the disk
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.ppm");
std::cout << "Read image: " << filename << std::endl;
vpImageIo::read(I, filename);
std::cout << "I=" << I.getWidth() << "x" << I.getHeight() << std::endl;
int nbIterations = 100;
unsigned int nbBins = 256;
unsigned int sum_single_thread = 0;
unsigned int sum_single_multithread = 0;
double t_single_thread = vpTime::measureTimeMs();
for (int iteration = 0; iteration < nbIterations; iteration++) {
sum_single_thread = histogramSum(I, nbBins, 1);
}
t_single_thread = vpTime::measureTimeMs() - t_single_thread;
double t_multithread = vpTime::measureTimeMs();
for (int iteration = 0; iteration < nbIterations; iteration++) {
sum_single_multithread = histogramSum(I, nbBins, nbThreads);
}
t_multithread = vpTime::measureTimeMs() - t_multithread;
std::cout << "sum_single_thread=" << sum_single_thread << " ; t_single_thread=" << t_single_thread
<< " ms ; mean=" << t_single_thread / (double)nbIterations << " ms" << std::endl;
std::cout << "sum_single_multithread=" << sum_single_multithread << " ; t_multithread=" << t_multithread
<< " ms ; mean=" << t_multithread / (double)nbIterations << " ms" << std::endl;
std::cout << "Speed-up=" << t_single_thread / (double)t_multithread << "X" << std::endl;
if (sum_single_thread != I.getSize() || sum_single_multithread != I.getSize()) {
std::cerr << "Problem with histogram!" << std::endl;
return -1;
}
nbBins = 101;
if (!compareHistogram(I, nbBins)) {
std::cerr << "Histogram are different!" << std::endl;
return -1;
}
// Test histogram computation on empty image
vpHistogram histogram;
vpImage<unsigned char> I_test(0, 0);
histogram.calculate(I_test, 256, 4);
if (histogram.getSize() == 256) {
for (unsigned int cpt = 0; cpt < 256; cpt++) {
if (histogram[cpt] != 0) {
std::cerr << "Problem with histogram computation: histogram[" << cpt << "]=" << histogram[cpt]
<< " but should be zero!" << std::endl;
}
}
} else {
std::cerr << "Bad histogram size!" << std::endl;
return -1;
}
// Test histogram computation on image size < nbThreads
I_test.init(3, 1);
I_test = 100;
histogram.calculate(I_test, 256, 4);
if (histogram.getSize() == 256) {
for (unsigned int cpt = 0; cpt < 256; cpt++) {
if (cpt == 100) {
if (histogram[cpt] != I_test.getSize()) {
std::cerr << "Problem with histogram computation: histogram[" << cpt << "]=" << histogram[cpt]
<< " but should be: " << I_test.getSize() << std::endl;
return -1;
}
} else {
if (histogram[cpt] != 0) {
std::cerr << "Problem with histogram computation: histogram[" << cpt << "]=" << histogram[cpt]
<< " but should be zero!" << std::endl;
}
}
}
} else {
std::cerr << "Bad histogram size!" << std::endl;
return -1;
}
// Test histogram computation on small image size
I_test.init(7, 1);
I_test = 50;
histogram.calculate(I_test, 256, 4);
if (histogram.getSize() == 256) {
for (unsigned int cpt = 0; cpt < 256; cpt++) {
if (cpt == 50) {
if (histogram[cpt] != I_test.getSize()) {
std::cerr << "Problem with histogram computation: histogram[" << cpt << "]=" << histogram[cpt]
<< " but should be: " << I_test.getSize() << std::endl;
return -1;
}
} else {
if (histogram[cpt] != 0) {
std::cerr << "Problem with histogram computation: histogram[" << cpt << "]=" << histogram[cpt]
<< " but should be zero!" << std::endl;
}
}
}
} else {
std::cerr << "Bad histogram size!" << std::endl;
return -1;
}
std::cout << "testHistogram is OK!" << std::endl;
return 0;
} catch (const vpException &e) {
std::cerr << "Catch an exception: " << e.what() << std::endl;
return 1;
}
}