Visual Servoing Platform  version 3.3.0 under development (2020-02-17)
servoViper850Point2DArtVelocity-jointAvoidance-gpa.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See http://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * tests the control law
33  * eye-in-hand control
34  * velocity computed in articular
35  *
36  * Authors:
37  * Eric Marchand
38  * Fabien Spindler
39  *
40  *****************************************************************************/
41 
50 #include <visp3/core/vpConfig.h>
51 #include <visp3/core/vpDebug.h> // Debug trace
52 
53 #include <fstream>
54 #include <iostream>
55 #include <sstream>
56 #include <stdio.h>
57 #include <stdlib.h>
58 
59 #if (defined(VISP_HAVE_VIPER850) && defined(VISP_HAVE_DC1394) && defined(VISP_HAVE_DISPLAY))
60 
61 #include <visp3/blob/vpDot2.h>
62 #include <visp3/core/vpDisplay.h>
63 #include <visp3/core/vpException.h>
64 #include <visp3/core/vpHomogeneousMatrix.h>
65 #include <visp3/core/vpImage.h>
66 #include <visp3/core/vpIoTools.h>
67 #include <visp3/core/vpMath.h>
68 #include <visp3/core/vpPoint.h>
69 #include <visp3/gui/vpDisplayGTK.h>
70 #include <visp3/gui/vpDisplayOpenCV.h>
71 #include <visp3/gui/vpDisplayX.h>
72 #include <visp3/gui/vpPlot.h>
73 #include <visp3/robot/vpRobotViper850.h>
74 #include <visp3/sensor/vp1394TwoGrabber.h>
75 #include <visp3/visual_features/vpFeatureBuilder.h>
76 #include <visp3/visual_features/vpFeaturePoint.h>
77 #include <visp3/vs/vpServo.h>
78 #include <visp3/vs/vpServoDisplay.h>
79 
80 int main()
81 {
82  try {
83  vpRobotViper850 robot;
84 
85  vpServo task;
86 
88 
89  bool reset = false;
90  vp1394TwoGrabber g(reset);
92  g.setFramerate(vp1394TwoGrabber::vpFRAMERATE_60);
93  g.open(I);
94 
95  g.acquire(I);
96 
97 #ifdef VISP_HAVE_X11
98  vpDisplayX display(I, 800, 100, "Current image");
99 #elif defined(VISP_HAVE_OPENCV)
100  vpDisplayOpenCV display(I, 800, 100, "Current image");
101 #elif defined(VISP_HAVE_GTK)
102  vpDisplayGTK display(I, 800, 100, "Current image");
103 #endif
104 
106  vpDisplay::flush(I);
107 
108  vpColVector jointMin(6), jointMax(6);
109  jointMin = robot.getJointMin();
110  jointMax = robot.getJointMax();
111 
112  vpColVector Qmin(6), tQmin(6);
113  vpColVector Qmax(6), tQmax(6);
114  vpColVector Qmiddle(6);
115  vpColVector data(10);
116 
117  double rho = 0.15;
118  for (unsigned int i = 0; i < 6; i++) {
119  Qmin[i] = jointMin[i] + 0.5 * rho * (jointMax[i] - jointMin[i]);
120  Qmax[i] = jointMax[i] - 0.5 * rho * (jointMax[i] - jointMin[i]);
121  }
122  Qmiddle = (Qmin + Qmax) / 2.;
123  double rho1 = 0.1;
124 
125  for (unsigned int i = 0; i < 6; i++) {
126  tQmin[i] = Qmin[i] + 0.5 * (rho1) * (Qmax[i] - Qmin[i]);
127  tQmax[i] = Qmax[i] - 0.5 * (rho1) * (Qmax[i] - Qmin[i]);
128  }
129 
130  vpColVector q(6);
131 
132  // Create a window with two graphics
133  // - first graphic to plot q(t), Qmin, Qmax, tQmin and tQmax
134  // - second graphic to plot the cost function h_s
135  vpPlot plot(2);
136 
137  // The first graphic contains 10 data to plot: q(t), Qmin, Qmax, tQmin and
138  // tQmax
139  plot.initGraph(0, 10);
140  // The second graphic contains 1 curve, the cost function h_s
141  plot.initGraph(1, 1);
142 
143  // For the first graphic :
144  // - along the x axis the expected values are between 0 and 200
145  // - along the y axis the expected values are between -1.2 and 1.2
146  plot.initRange(0, 0., 200., -1.2, 1.2);
147  plot.setTitle(0, "Joint behavior");
148 
149  // For the second graphic :
150  // - along the x axis the expected values are between 0 and 200 and
151  // the step is 1
152  // - along the y axis the expected values are between 0 and 0.0001 and the
153  // step is 0.00001
154  plot.initRange(1, 0., 200., 0., 1e-4);
155  plot.setTitle(1, "Cost function");
156 
157  // For the first graphic, set the curves legend
158  char legend[10];
159  for (unsigned int i = 0; i < 6; i++) {
160  sprintf(legend, "q%u", i + 1);
161  plot.setLegend(0, i, legend);
162  }
163  plot.setLegend(0, 6, "tQmin");
164  plot.setLegend(0, 7, "tQmax");
165  plot.setLegend(0, 8, "Qmin");
166  plot.setLegend(0, 9, "Qmax");
167 
168  // Set the curves color
169  plot.setColor(0, 0, vpColor::red);
170  plot.setColor(0, 1, vpColor::green);
171  plot.setColor(0, 2, vpColor::blue);
172  plot.setColor(0, 3, vpColor::orange);
173  plot.setColor(0, 4, vpColor(0, 128, 0));
174  plot.setColor(0, 5, vpColor::cyan);
175  for (unsigned int i = 6; i < 10; i++)
176  plot.setColor(0, i, vpColor::black); // for Q and tQ [min,max]
177 
178  // For the second graphic, set the curves legend
179  plot.setLegend(1, 0, "h_s");
180 
181  double beta = 1;
182 
183  // Set the amplitude of the control law due to the secondary task
184  std::cout << " Give the parameters beta (1) : ";
185  std::cin >> beta;
186 
187  vpDot2 dot;
188 
189  std::cout << "Click on a dot..." << std::endl;
190  dot.initTracking(I);
191  vpImagePoint cog = dot.getCog();
193  vpDisplay::flush(I);
194 
195  vpCameraParameters cam;
196  // Update camera parameters
197  robot.getCameraParameters(cam, I);
198 
199  // sets the current position of the visual feature
200  vpFeaturePoint p;
201  vpFeatureBuilder::create(p, cam, dot); // retrieve x,y and Z of the vpPoint structure
202 
203  p.set_Z(1);
204  // sets the desired position of the visual feature
205  vpFeaturePoint pd;
206  pd.buildFrom(0, 0, 1);
207 
208  // Define the task
209  // - we want an eye-in-hand control law
210  // - articular velocity are computed
213 
215  robot.get_cVe(cVe);
216  std::cout << cVe << std::endl;
217  task.set_cVe(cVe);
218 
219  // - Set the Jacobian (expressed in the end-effector frame)") ;
220  vpMatrix eJe;
221  robot.get_eJe(eJe);
222  task.set_eJe(eJe);
223 
224  // - we want to see a point on a point..") ;
225  std::cout << std::endl;
226  task.addFeature(p, pd);
227 
228  // - set the gain
229  task.setLambda(0.8);
230 
231  // Display task information " ) ;
232  task.print();
233 
235 
236  int iter = 0;
237  std::cout << "\nHit CTRL-C to stop the loop...\n" << std::flush;
238  for (;;) {
239  iter++;
240  // Acquire a new image from the camera
241  g.acquire(I);
242 
243  // Display this image
245 
246  // Achieve the tracking of the dot in the image
247  dot.track(I);
248  cog = dot.getCog();
249 
250  // Display a green cross at the center of gravity position in the image
252 
253  // Get the measured joint positions of the robot
255 
256  // Update the point feature from the dot location
257  vpFeatureBuilder::create(p, cam, dot);
258 
259  // Get the jacobian of the robot
260  robot.get_eJe(eJe);
261  // Update this jacobian in the task structure. It will be used to
262  // compute the velocity skew (as an articular velocity) qdot = -lambda *
263  // L^+ * cVe * eJe * (s-s*)
264  task.set_eJe(eJe);
265 
266  vpColVector prim_task;
267  vpColVector e2(6);
268  // Compute the visual servoing skew vector
269  prim_task = task.computeControlLaw();
270 
271  vpColVector sec_task(6);
272  double h_s = 0;
273  {
274  // joint limit avoidance with secondary task
275 
276  vpColVector de2dt(6);
277  de2dt = 0;
278  e2 = 0;
279  for (unsigned int i = 0; i < 6; i++) {
280  double S = 0;
281  if (q[i] > tQmax[i])
282  S = q[i] - tQmax[i];
283  if (q[i] < tQmin[i])
284  S = q[i] - tQmin[i];
285  double D = (Qmax[i] - Qmin[i]);
286  h_s += vpMath::sqr(S) / D;
287  e2[i] = S / D;
288  }
289  h_s = beta * h_s / 2.0; // cost function
290  e2 *= beta;
291  // std::cout << e2.t() << std::endl;
292  std::cout << "Cost function h_s: " << h_s << std::endl;
293 
294  sec_task = task.secondaryTask(e2, de2dt);
295  }
296 
297  vpColVector v;
298  v = prim_task + sec_task;
299 
300  // Display the current and desired feature points in the image display
301  vpServoDisplay::display(task, cam, I);
302 
303  // Apply the computed joint velocities to the robot
305 
306  {
307  // Add the material to plot curves
308 
309  // q normalized between (entre -1 et 1)
310  for (unsigned int i = 0; i < 6; i++) {
311  data[i] = (q[i] - Qmiddle[i]);
312  data[i] /= (Qmax[i] - Qmin[i]);
313  data[i] *= 2;
314  }
315  unsigned int joint = 2;
316  data[6] = 2 * (tQmin[joint] - Qmiddle[joint]) / (Qmax[joint] - Qmin[joint]);
317  data[7] = 2 * (tQmax[joint] - Qmiddle[joint]) / (Qmax[joint] - Qmin[joint]);
318  data[8] = -1;
319  data[9] = 1;
320  plot.plot(0, iter, data); // plot q, Qmin, Qmax, tQmin, tQmax
321  plot.plot(1, 0, iter, h_s); // plot the cost function
322  }
323 
324  vpDisplay::flush(I);
325  }
326 
327  // Display task information
328  task.print();
329  task.kill();
330  return EXIT_SUCCESS;
331  }
332  catch (const vpException &e) {
333  std::cout << "Catch an exception: " << e.getMessage() << std::endl;
334  return EXIT_FAILURE;
335  }
336 }
337 
338 #else
339 int main()
340 {
341  std::cout << "You do not have an Viper 850 robot connected to your computer..." << std::endl;
342  return EXIT_SUCCESS;
343 }
344 #endif
void getPosition(const vpRobot::vpControlFrameType frame, vpColVector &position)
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:164
void buildFrom(double x, double y, double Z)
void getCameraParameters(vpCameraParameters &cam, const unsigned int &image_width, const unsigned int &image_height) const
Definition: vpViper850.cpp:539
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:497
static const vpColor black
Definition: vpColor.h:173
Class to define colors available for display functionnalities.
Definition: vpColor.h:119
vpColVector getJointMin() const
Definition: vpViper.cpp:1199
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:508
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:150
vpRobot::vpRobotStateType setRobotState(vpRobot::vpRobotStateType newState)
error that can be emited by ViSP classes.
Definition: vpException.h:71
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void get_eJe(vpMatrix &eJe)
static const vpColor green
Definition: vpColor.h:182
This tracker is meant to track a blob (connex pixels with same gray level) on a vpImage.
Definition: vpDot2.h:126
static void flush(const vpImage< unsigned char > &I)
static const vpColor red
Definition: vpColor.h:179
vpColVector secondaryTask(const vpColVector &de2dt, const bool &useLargeProjectionOperator=false)
Definition: vpServo.cpp:1485
static const vpColor orange
Definition: vpColor.h:189
void kill()
Definition: vpServo.cpp:192
Initialize the velocity controller.
Definition: vpRobot.h:66
static const vpColor cyan
Definition: vpColor.h:188
vpColVector computeControlLaw()
Definition: vpServo.cpp:935
void set_Z(double Z)
static double sqr(double x)
Definition: vpMath.h:114
static void display(const vpImage< unsigned char > &I)
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
Generic class defining intrinsic camera parameters.
void setLambda(double c)
Definition: vpServo.h:406
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:137
void track(const vpImage< unsigned char > &I, bool canMakeTheWindowGrow=true)
Definition: vpDot2.cpp:441
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:574
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &velocity)
const char * getMessage(void) const
Definition: vpException.cpp:90
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
void get_cVe(vpVelocityTwistMatrix &cVe) const
Implementation of column vector and the associated operations.
Definition: vpColVector.h:130
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:450
void initTracking(const vpImage< unsigned char > &I, unsigned int size=0)
Definition: vpDot2.cpp:253
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:313
This class enables real time drawing of 2D or 3D graphics. An instance of the class open a window whi...
Definition: vpPlot.h:115
vpImagePoint getCog() const
Definition: vpDot2.h:161
Class for firewire ieee1394 video devices using libdc1394-2.x api.
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:88
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:223
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
vpColVector getJointMax() const
Definition: vpViper.cpp:1208
static const vpColor blue
Definition: vpColor.h:185