Visual Servoing Platform  version 3.3.0 under development (2020-02-17)
servoSimu4Points.cpp

Demonstration of the wireframe simulator with a simple visual servoing.

/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2019 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Demonstration of the wireframe simulator with a simple visual servoing
*
* Authors:
* Nicolas Melchior
*
*****************************************************************************/
#include <stdlib.h>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpTime.h>
#include <visp3/core/vpVelocityTwistMatrix.h>
#include <visp3/gui/vpDisplayD3D.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/io/vpImageIo.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/robot/vpWireFrameSimulator.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/vs/vpServo.h>
#define GETOPTARGS "dh"
#ifdef VISP_HAVE_DISPLAY
void usage(const char *name, std::string ipath, const char *badparam);
bool getOptions(int argc, const char **argv, std::string &ipath, bool &display);
void usage(const char *name, std::string ipath, const char *badparam)
{
fprintf(stdout, "\n\
Demonstration of the wireframe simulator with a simple visual servoing.\n\
\n\
The visual servoing consists in bringing the camera at a desired \n\
position from the object.\n\
\n\
The visual features used to compute the pose of the camera and \n\
thus the control law are four points.\n\
\n\
This demonstration explains also how to move the object around a world\n\
reference frame. Here, the movement is a rotation around the x and y axis\n\
at a given distance from the world frame. In fact the object trajectory\n\
is on a sphere whose center is the origin of the world frame.\n\
\n\
SYNOPSIS\n\
%s [-d] [-h]\n", name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
-i <input image path> %s\n\
Set mire.pgm image input path.\n\
From this path read \"mire/mire.pgm\" image.\n\
Setting the VISP_INPUT_IMAGE_PATH environment variable \n\
produces the same behaviour than using this option.\n\
\n\
-d \n\
Turn off the display.\n\
\n\
-h\n\
Print the help.\n", ipath.c_str());
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, std::string &ipath, bool &display)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'i':
ipath = optarg_;
break;
case 'd':
display = false;
break;
case 'h':
usage(argv[0], ipath, NULL);
return false;
break;
default:
usage(argv[0], ipath, optarg_);
return false;
break;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], ipath, NULL);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
int main(int argc, const char **argv)
{
try {
bool opt_display = true;
std::string opt_ipath;
std::string env_ipath;
std::string ipath;
std::string filename;
// Read the command line options
if (getOptions(argc, argv, opt_ipath, opt_display) == false) {
exit(-1);
}
vpImage<vpRGBa> Iint(480, 640, 255);
vpImage<vpRGBa> Iext1(480, 640, 255);
vpImage<vpRGBa> Iext2(480, 640, 255);
#if defined VISP_HAVE_X11
vpDisplayX display[3];
#elif defined VISP_HAVE_OPENCV
vpDisplayOpenCV display[3];
#elif defined VISP_HAVE_GDI
vpDisplayGDI display[3];
#elif defined VISP_HAVE_D3D9
vpDisplayD3D display[3];
#elif defined VISP_HAVE_GTK
vpDisplayGTK display[3];
#endif
if (opt_display) {
// Display size is automatically defined by the image (I) size
display[0].init(Iint, 100, 100, "The internal view");
display[1].init(Iext1, 100, 100, "The first external view");
display[2].init(Iext2, 100, 100, "The second external view");
}
vpServo task;
float sampling_time = 0.040f; // Sampling period in second
robot.setSamplingTime(sampling_time);
// Since the task gain lambda is very high, we need to increase default
// max velocities
// Set initial position of the object in the camera frame
vpHomogeneousMatrix cMo(0, 0.1, 2.0, vpMath::rad(35), vpMath::rad(25), 0);
// Set desired position of the object in the camera frame
vpHomogeneousMatrix cdMo(0.0, 0.0, 1.0, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
// Set initial position of the object in the world frame
vpHomogeneousMatrix wMo(0.0, 0.0, 0.2, 0, 0, 0);
// Position of the camera in the world frame
wMc = wMo * cMo.inverse();
// The four point used as visual features
vpPoint point[4];
point[0].setWorldCoordinates(-0.1, -0.1, 0);
point[3].setWorldCoordinates(-0.1, 0.1, 0);
point[2].setWorldCoordinates(0.1, 0.1, 0);
point[1].setWorldCoordinates(0.1, -0.1, 0);
// Projection of the points
for (int i = 0; i < 4; i++)
point[i].track(cMo);
// Set the current visual feature
for (int i = 0; i < 4; i++)
vpFeatureBuilder::create(p[i], point[i]);
// Projection of the points
for (int i = 0; i < 4; i++)
point[i].track(cdMo);
for (int i = 0; i < 4; i++)
vpFeatureBuilder::create(pd[i], point[i]);
vpHomogeneousMatrix cMe; // Identity
task.set_cVe(cVe);
vpMatrix eJe;
robot.get_eJe(eJe);
task.set_eJe(eJe);
for (int i = 0; i < 4; i++)
task.addFeature(p[i], pd[i]);
task.setLambda(10);
std::list<vpImageSimulator> list;
for (int i = 0; i < 4; i++)
X[i].resize(3);
X[0][0] = -0.2;
X[0][1] = -0.2;
X[0][2] = 0;
X[1][0] = 0.2;
X[1][1] = -0.2;
X[1][2] = 0;
X[2][0] = 0.2;
X[2][1] = 0.2;
X[2][2] = 0;
X[3][0] = -0.2;
X[3][1] = 0.2;
X[3][2] = 0;
// Get the visp-images-data package path or VISP_INPUT_IMAGE_PATH
// environment variable value
if (!env_ipath.empty())
ipath = env_ipath;
if (!opt_ipath.empty())
ipath = opt_ipath;
filename = vpIoTools::createFilePath(ipath, "mire/mire.pgm");
imsim.init(filename.c_str(), X);
list.push_back(imsim);
// Set the scene
// Initialize simulator frames
sim.set_fMo(wMo); // Position of the object in the world reference frame
sim.setCameraPositionRelObj(cMo); // Initial position of the object in the camera frame
sim.setDesiredCameraPosition(cdMo); // Desired position of the object in the camera frame
// Set the External camera position
// Computes the position of a camera which is fixed in the object frame
vpHomogeneousMatrix camoMf(0, 0.0, 1.5, 0, vpMath::rad(140), 0);
camoMf = camoMf * (sim.get_fMo().inverse());
// Set the parameters of the cameras (internal and external)
vpCameraParameters camera(1000, 1000, 320, 240);
int stop = 10;
if (opt_display) {
stop = 2500;
// Get the internal and external views
sim.getInternalImage(Iint);
sim.getExternalImage(Iext1);
sim.getExternalImage(Iext2, camoMf);
// Display the object frame (current and desired position)
vpDisplay::displayFrame(Iint, cMo, camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iint, cdMo, camera, 0.2, vpColor::none);
// Display the object frame the world reference frame and the camera
// frame
vpDisplay::displayFrame(Iext1, camMf * sim.get_fMo() * cMo.inverse(), camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iext1, camMf * sim.get_fMo(), camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iext1, camMf, camera, 0.2, vpColor::none);
// Display the world reference frame and the object frame
vpDisplay::displayFrame(Iext2, camoMf, camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iext2, camoMf * sim.get_fMo(), camera, 0.05, vpColor::none);
std::cout << "Click on a display" << std::endl;
while (!vpDisplay::getClick(Iint, false) && !vpDisplay::getClick(Iext1, false) &&
!vpDisplay::getClick(Iext2, false)) {
};
}
robot.setPosition(wMc);
// Print the task
task.print();
int iter = 0;
while (iter++ < stop) {
if (opt_display) {
}
double t = vpTime::measureTimeMs();
robot.get_eJe(eJe);
task.set_eJe(eJe);
wMc = robot.getPosition();
cMo = wMc.inverse() * wMo;
for (int i = 0; i < 4; i++) {
point[i].track(cMo);
vpFeatureBuilder::create(p[i], point[i]);
}
v = task.computeControlLaw();
// Compute the movement of the object around the world reference frame.
vpHomogeneousMatrix a(0, 0, 0.2, 0, 0, 0);
vpHomogeneousMatrix b(0, 0, 0, vpMath::rad(1.5 * iter), 0, 0);
vpHomogeneousMatrix c(0, 0, 0, 0, vpMath::rad(2.5 * iter), 0);
// Move the object in the world frame
wMo = b * c * a;
sim.set_fMo(wMo); // Move the object in the simulator
// Compute the position of the external view which is fixed in the
// object frame
camoMf.buildFrom(0, 0.0, 1.5, 0, vpMath::rad(150), 0);
camoMf = camoMf * (sim.get_fMo().inverse());
if (opt_display) {
// Get the internal and external views
sim.getInternalImage(Iint);
sim.getExternalImage(Iext1);
sim.getExternalImage(Iext2, camoMf);
// Display the object frame (current and desired position)
vpDisplay::displayFrame(Iint, cMo, camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iint, cdMo, camera, 0.2, vpColor::none);
// Display the camera frame, the object frame the world reference
// frame
vpDisplay::displayFrame(Iext1, sim.getExternalCameraPosition() * sim.get_fMo() * cMo.inverse(), camera, 0.2,
// Display the world reference frame and the object frame
vpDisplay::displayFrame(Iext2, camoMf, camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iext2, camoMf * sim.get_fMo(), camera, 0.05, vpColor::none);
}
vpTime::wait(t, sampling_time * 1000); // Wait 40 ms
std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
}
task.print();
task.kill();
return EXIT_SUCCESS;
} catch (const vpException &e) {
std::cout << "Catch an exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#else
int main()
{
std::cout << "You do not have X11, or GDI (Graphical Device Interface), or GTK functionalities to display images..." << std::endl;
std::cout << "Tip if you are on a unix-like system:" << std::endl;
std::cout << "- Install X11, configure again ViSP using cmake and build again this example" << std::endl;
std::cout << "Tip if you are on a windows-like system:" << std::endl;
std::cout << "- Install GDI, configure again ViSP using cmake and build again this example" << std::endl;
return EXIT_SUCCESS;
}
#endif