Visual Servoing Platform  version 3.3.0 under development (2020-02-17)
servoAfma6Points2DCamVelocityEyeToHand.cpp

Example of a eye-to-hand control law. We control here a real robot, the Afma6 robot (cartesian robot, with 6 degrees of freedom). The robot is controlled in the camera frame.

/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2019 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* tests the control law
* eye-to-hand control
* velocity computed in the camera frame
*
* Authors:
* Eric Marchand
*
*****************************************************************************/
#include <cmath> // std::fabs
#include <limits> // numeric_limits
#include <list>
#include <stdlib.h>
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpDebug.h> // Debug trace
#if (defined(VISP_HAVE_AFMA6) && defined(VISP_HAVE_DC1394))
#define SAVE 0
#include <visp3/blob/vpDot.h>
#include <visp3/core/vpDisplay.h>
#include <visp3/core/vpException.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpImagePoint.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpPoint.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/io/vpImageIo.h>
#include <visp3/robot/vpRobotAfma6.h>
#include <visp3/sensor/vp1394TwoGrabber.h>
#include <visp3/vision/vpPose.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
#define L 0.006
#define D 0
int main()
{
try {
vpServo task;
int i;
g.open(I);
g.acquire(I);
#ifdef VISP_HAVE_X11
vpDisplayX display(I, 100, 100, "Current image");
#elif defined(VISP_HAVE_OPENCV)
vpDisplayOpenCV display(I, 100, 100, "Current image");
#elif defined(VISP_HAVE_GTK)
vpDisplayGTK display(I, 100, 100, "Current image");
#endif
std::cout << std::endl;
std::cout << "-------------------------------------------------------" << std::endl;
std::cout << " Test program for vpServo " << std::endl;
std::cout << " Eye-to-hand task control" << std::endl;
std::cout << " Simulation " << std::endl;
std::cout << " task : servo a point " << std::endl;
std::cout << "-------------------------------------------------------" << std::endl;
std::cout << std::endl;
int nbPoint = 7;
vpDot dot[nbPoint];
for (i = 0; i < nbPoint; i++) {
dot[i].initTracking(I);
dot[i].setGraphics(true);
dot[i].track(I);
dot[i].setGraphics(false);
}
// Compute the pose 3D model
vpPoint point[nbPoint];
point[0].setWorldCoordinates(-2 * L, D, -3 * L);
point[1].setWorldCoordinates(0, D, -3 * L);
point[2].setWorldCoordinates(2 * L, D, -3 * L);
point[3].setWorldCoordinates(-L, D, -L);
point[4].setWorldCoordinates(L, D, -L);
point[5].setWorldCoordinates(L, D, L);
point[6].setWorldCoordinates(-L, D, L);
vpRobotAfma6 robot;
// Update camera parameters
robot.getCameraParameters(cam, I);
vpPose pose;
pose.clearPoint();
for (i = 0; i < nbPoint; i++) {
cog = dot[i].getCog();
double x = 0, y = 0;
point[i].set_x(x);
point[i].set_y(y);
pose.addPoint(point[i]);
}
// compute the initial pose using Dementhon method followed by a non
// linear minimisation method
std::cout << cMo << std::endl;
cMo.print();
/*------------------------------------------------------------------
-- Learning the desired position
-- or reading the desired position
------------------------------------------------------------------
*/
std::cout << " Learning 0/1 " << std::endl;
char name[FILENAME_MAX];
sprintf(name, "cdMo.dat");
int learning;
std::cin >> learning;
if (learning == 1) {
// save the object position
vpTRACE("Save the location of the object in a file cdMo.dat");
std::ofstream f(name);
cMo.save(f);
f.close();
exit(1);
}
{
vpTRACE("Loading desired location from cdMo.dat");
std::ifstream f("cdMo.dat");
cdMo.load(f);
f.close();
}
vpFeaturePoint p[nbPoint], pd[nbPoint];
// set the desired position of the point by forward projection using
// the pose cdMo
for (i = 0; i < nbPoint; i++) {
vpColVector cP, p;
point[i].changeFrame(cdMo, cP);
point[i].projection(cP, p);
pd[i].set_x(p[0]);
pd[i].set_y(p[1]);
}
//------------------------------------------------------------------
vpTRACE("define the task");
vpTRACE("\t we want an eye-in-hand control law");
vpTRACE("\t robot is controlled in the camera frame");
for (i = 0; i < nbPoint; i++) {
task.addFeature(p[i], pd[i]);
}
vpTRACE("Display task information ");
task.print();
//------------------------------------------------------------------
double convergence_threshold = 0.00; // 025 ;
//-------------------------------------------------------------
double error = 1;
unsigned int iter = 0;
vpTRACE("\t loop");
vpColVector v; // computed robot velocity
// position of the object in the effector frame
vpHomogeneousMatrix oMcamrobot;
oMcamrobot[0][3] = -0.05;
int it = 0;
double lambda_av = 0.1;
double alpha = 1; // 1 ;
double beta = 3; // 3 ;
std::cout << "alpha 0.7" << std::endl;
std::cin >> alpha;
std::cout << "beta 5" << std::endl;
std::cin >> beta;
std::list<vpImagePoint> Lcog;
while (error > convergence_threshold) {
std::cout << "---------------------------------------------" << iter++ << std::endl;
g.acquire(I);
ip.set_i(265);
ip.set_j(150);
vpDisplay::displayText(I, ip, "Eye-To-Hand Visual Servoing", vpColor::green);
ip.set_i(280);
ip.set_j(150);
vpDisplay::displayText(I, ip, "IRISA-INRIA Rennes, Lagadic project", vpColor::green);
try {
for (i = 0; i < nbPoint; i++) {
dot[i].track(I);
Lcog.push_back(dot[i].getCog());
}
} catch (...) {
vpTRACE("Error detected while tracking visual features");
robot.stopMotion();
exit(1);
}
// compute the initial pose using a non linear minimisation method
pose.clearPoint();
for (i = 0; i < nbPoint; i++) {
double x = 0, y = 0;
cog = dot[i].getCog();
point[i].set_x(x);
point[i].set_y(y);
point[i].changeFrame(cdMo, cP);
p[i].set_x(x);
p[i].set_y(y);
p[i].set_Z(cP[2]);
pose.addPoint(point[i]);
point[i].display(I, cMo, cam, vpColor::green);
point[i].display(I, cdMo, cam, vpColor::blue);
}
vpHomogeneousMatrix cMe, camrobotMe;
robot.get_cMe(camrobotMe);
cMe = cMo * oMcamrobot * camrobotMe;
task.set_cVe(cMe);
vpMatrix eJe;
robot.get_eJe(eJe);
task.set_eJe(eJe);
// Compute the adaptative gain (speed up the convergence)
double gain;
if (iter > 2) {
if (std::fabs(alpha) <= std::numeric_limits<double>::epsilon())
gain = lambda_av;
else {
gain = alpha * exp(-beta * (task.getError()).sumSquare()) + lambda_av;
}
} else
gain = lambda_av;
if (SAVE == 1)
gain = gain / 5;
vpTRACE("%f %f %f %f %f", alpha, beta, lambda_av, (task.getError()).sumSquare(), gain);
task.setLambda(gain);
v = task.computeControlLaw();
// display points trajectory
for (std::list<vpImagePoint>::const_iterator it_cog = Lcog.begin(); it_cog != Lcog.end(); ++it_cog) {
}
vpServoDisplay::display(task, cam, I);
error = (task.getError()).sumSquare();
std::cout << "|| s - s* || = " << error << std::endl;
if (error > 7) {
vpTRACE("Error detected while tracking visual features");
robot.stopMotion();
exit(1);
}
// display the pose
// pose.display(I,cMo,cam, 0.04, vpColor::red) ;
// display the pose
// pose.display(I,cdMo,cam, 0.04, vpColor::blue) ;
if ((SAVE == 1) && (iter % 3 == 0)) {
sprintf(name, "/tmp/marchand/image.%04d.ppm", it++);
vpImageIo::write(Ic, name);
}
}
v = 0;
task.kill();
return EXIT_SUCCESS;
}
catch (const vpException &e) {
std::cout << "Test failed with exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#else
int main()
{
std::cout << "You do not have an afma6 robot connected to your computer..." << std::endl;
return EXIT_SUCCESS;
}
#endif