Visual Servoing Platform  version 3.1.0
testMatrix.cpp

Test some vpMatrix functionalities.

/****************************************************************************
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2017 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Test some vpMatrix functionalities.
*
* Authors:
* Fabien Spindler
*
*****************************************************************************/
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpDebug.h>
#include <visp3/core/vpGEMM.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpVelocityTwistMatrix.h>
#include <stdio.h>
#include <stdlib.h>
namespace
{
bool test(const std::string &s, const vpMatrix &M, const std::vector<double> &bench)
{
static unsigned int cpt = 0;
std::cout << "** Test " << ++cpt << std::endl;
std::cout << s << "(" << M.getRows() << "," << M.getCols() << ") = \n" << M << std::endl;
if (bench.size() != M.size()) {
std::cout << "Test fails: bad size wrt bench" << std::endl;
return false;
}
for (unsigned int i = 0; i < M.size(); i++) {
if (std::fabs(M.data[i] - bench[i]) > std::fabs(M.data[i]) * std::numeric_limits<double>::epsilon()) {
std::cout << "Test fails: bad content" << std::endl;
return false;
}
}
return true;
}
double getRandomValues(const double min, const double max)
{
return (max - min) * ((double)rand() / (double)RAND_MAX) + min;
}
bool equalMatrix(const vpMatrix &A, const vpMatrix &B, const double tol = std::numeric_limits<double>::epsilon())
{
if (A.getRows() != B.getRows() || A.getCols() != B.getCols()) {
return false;
}
for (unsigned int i = 0; i < A.getRows(); i++) {
for (unsigned int j = 0; j < A.getCols(); j++) {
if (!vpMath::equal(A[i][j], B[i][j], tol)) {
return false;
}
}
}
return true;
}
#if defined(VISP_HAVE_LAPACK) && !defined(VISP_HAVE_LAPACK_BUILT_IN)
vpMatrix generateRandomMatrix(const unsigned int rows, const unsigned int cols, const double min, const double max)
{
vpMatrix M(rows, cols);
for (unsigned int i = 0; i < M.getRows(); i++) {
for (unsigned int j = 0; j < M.getCols(); j++) {
M[i][j] = getRandomValues(min, max);
}
}
return M;
}
vpColVector generateRandomVector(const unsigned int rows, const double min, const double max)
{
vpColVector v(rows);
for (unsigned int i = 0; i < v.getRows(); i++) {
v[i] = getRandomValues(min, max);
}
return v;
}
// Copy of vpMatrix::mult2Matrices
vpMatrix dgemm_regular(const vpMatrix &A, const vpMatrix &B)
{
if ((A.getRows() != C.getRows()) || (B.getCols() != C.getCols()))
C.resize(A.getRows(), B.getCols(), false);
if (A.getCols() != B.getRows()) {
throw(vpException(vpException::dimensionError, "Cannot multiply (%dx%d) matrix by (%dx%d) matrix", A.getRows(),
A.getCols(), B.getRows(), B.getCols()));
}
// 5/12/06 some "very" simple optimization to avoid indexation
unsigned int BcolNum = B.getCols();
unsigned int BrowNum = B.getRows();
unsigned int i, j, k;
for (i = 0; i < A.getRows(); i++) {
double *rowptri = A[i];
double *ci = C[i];
for (j = 0; j < BcolNum; j++) {
double s = 0;
for (k = 0; k < BrowNum; k++)
s += rowptri[k] * B[k][j];
ci[j] = s;
}
}
return C;
}
// Copy of vpMatrix::AtA
vpMatrix AtA_regular(const vpMatrix &A)
{
B.resize(A.getCols(), A.getCols(), false);
unsigned int i, j, k;
double s;
double *ptr;
for (i = 0; i < A.getCols(); i++) {
double *Bi = B[i];
for (j = 0; j < i; j++) {
ptr = A.data;
s = 0;
for (k = 0; k < A.getRows(); k++) {
s += (*(ptr + i)) * (*(ptr + j));
ptr += A.getCols();
}
*Bi++ = s;
B[j][i] = s;
}
ptr = A.data;
s = 0;
for (k = 0; k < A.getRows(); k++) {
s += (*(ptr + i)) * (*(ptr + i));
ptr += A.getCols();
}
*Bi = s;
}
return B;
}
// Copy of vpMatrix::multMatrixVector
vpMatrix dgemv_regular(const vpMatrix &A, const vpColVector &v)
{
if (A.getCols() != v.getRows()) {
throw(vpException(vpException::dimensionError, "Cannot multiply a (%dx%d) matrix by a (%d) column vector",
A.getRows(), A.getCols(), v.getRows()));
}
w.resize(A.getRows(), true);
for (unsigned int j = 0; j < A.getCols(); j++) {
double vj = v[j]; // optimization em 5/12/2006
for (unsigned int i = 0; i < A.getRows(); i++) {
w[i] += A[i][j] * vj;
}
}
return w;
}
// Copy of vpMatrix::operator*(const vpVelocityTwistMatrix &V)
vpMatrix mat_mul_twist_matrix(const vpMatrix &A, const vpVelocityTwistMatrix &V)
{
if (A.getCols() != V.getRows()) {
throw(vpException(vpException::dimensionError, "Cannot multiply (%dx%d) matrix by (6x6) velocity twist matrix",
A.getRows(), A.getCols()));
}
M.resize(A.getRows(), 6, false);
unsigned int VcolNum = V.getCols();
unsigned int VrowNum = V.getRows();
for (unsigned int i = 0; i < A.getRows(); i++) {
double *rowptri = A[i];
double *ci = M[i];
for (unsigned int j = 0; j < VcolNum; j++) {
double s = 0;
for (unsigned int k = 0; k < VrowNum; k++)
s += rowptri[k] * V[k][j];
ci[j] = s;
}
}
return M;
}
#endif
}
int main()
{
try {
int err = 1;
{
vpColVector c(6, 1);
vpRowVector r(6, 1);
std::vector<double> bench(6, 1);
vpMatrix M1(c);
if (test("M1", M1, bench) == false)
return err;
vpMatrix M2(r);
if (test("M2", M2, bench) == false)
return err;
}
{
vpMatrix M(4, 5);
int val = 0;
for (unsigned int i = 0; i < M.getRows(); i++) {
for (unsigned int j = 0; j < M.getCols(); j++) {
M[i][j] = val++;
}
}
std::cout << "M ";
M.print(std::cout, 4);
N.init(M, 0, 1, 2, 3);
std::cout << "N ";
N.print(std::cout, 4);
std::string header("My 4-by-5 matrix\nwith a second line");
// Save matrix in text format
if (vpMatrix::saveMatrix("matrix.mat", M, false, header.c_str()))
std::cout << "Matrix saved in matrix.mat file" << std::endl;
else
return err;
// Load matrix in text format
char header_[100];
if (vpMatrix::loadMatrix("matrix.mat", M1, false, header_))
std::cout << "Matrix loaded from matrix.mat file with header \"" << header_ << "\": \n" << M1 << std::endl;
else
return err;
if (header != std::string(header_)) {
std::cout << "Bad header in matrix.mat" << std::endl;
return err;
}
// Save matrix in binary format
if (vpMatrix::saveMatrix("matrix.bin", M, true, header.c_str()))
std::cout << "Matrix saved in matrix.bin file" << std::endl;
else
return err;
// Load matrix in binary format
if (vpMatrix::loadMatrix("matrix.bin", M1, true, header_))
std::cout << "Matrix loaded from matrix.bin file with header \"" << header_ << "\": \n" << M1 << std::endl;
else
return err;
if (header != std::string(header_)) {
std::cout << "Bad header in matrix.bin" << std::endl;
return err;
}
// Save matrix in YAML format
if (vpMatrix::saveMatrixYAML("matrix.yml", M, header.c_str()))
std::cout << "Matrix saved in matrix.yml file" << std::endl;
else
return err;
// Read matrix in YAML format
if (vpMatrix::loadMatrixYAML("matrix.yml", M2, header_))
std::cout << "Matrix loaded from matrix.yml file with header \"" << header_ << "\": \n" << M2 << std::endl;
else
return err;
if (header != std::string(header_)) {
std::cout << "Bad header in matrix.mat" << std::endl;
return err;
}
}
{
std::cout << "R: \n" << R << std::endl;
vpMatrix M1(R);
std::cout << "M1: \n" << M1 << std::endl;
vpMatrix M2(M1);
std::cout << "M2: \n" << M2 << std::endl;
vpMatrix M3 = R;
std::cout << "M3: \n" << M3 << std::endl;
vpMatrix M4 = M1;
std::cout << "M4: \n" << M4 << std::endl;
}
{
std::cout << "------------------------" << std::endl;
std::cout << "--- TEST PRETTY PRINT---" << std::endl;
std::cout << "------------------------" << std::endl;
M.eye(4);
std::cout << "call std::cout << M;" << std::endl;
std::cout << M << std::endl;
std::cout << "call M.print (std::cout, 4);" << std::endl;
M.print(std::cout, 4);
std::cout << "------------------------" << std::endl;
M.resize(3, 3);
M.eye(3);
M[1][0] = 1.235;
M[1][1] = 12.345;
M[1][2] = .12345;
std::cout << "call std::cout << M;" << std::endl;
std::cout << M;
std::cout << "call M.print (std::cout, 6);" << std::endl;
M.print(std::cout, 6);
std::cout << std::endl;
std::cout << "------------------------" << std::endl;
M[0][0] = -1.235;
M[1][0] = -12.235;
std::cout << "call std::cout << M;" << std::endl;
std::cout << M << std::endl;
std::cout << "call M.print (std::cout, 10);" << std::endl;
M.print(std::cout, 10);
std::cout << std::endl;
std::cout << "call M.print (std::cout, 2);" << std::endl;
M.print(std::cout, 2);
std::cout << std::endl;
std::cout << "------------------------" << std::endl;
M.resize(3, 3);
M.eye(3);
M[0][2] = -0.0000000876;
std::cout << "call std::cout << M;" << std::endl;
std::cout << M << std::endl;
std::cout << "call M.print (std::cout, 4);" << std::endl;
M.print(std::cout, 4);
std::cout << std::endl;
std::cout << "call M.print (std::cout, 10, \"M\");" << std::endl;
M.print(std::cout, 10, "M");
std::cout << std::endl;
std::cout << "call M.print (std::cout, 20, \"M\");" << std::endl;
M.print(std::cout, 20, "M");
std::cout << std::endl;
std::cout << "------------------------" << std::endl;
std::cout << "--- TEST RESIZE --------" << std::endl;
std::cout << "------------------------" << std::endl;
std::cout << "5x5" << std::endl;
M.resize(5, 5, false);
std::cout << M << std::endl;
std::cout << "3x2" << std::endl;
M.resize(3, 2, false);
std::cout << M << std::endl;
std::cout << "2x2" << std::endl;
M.resize(2, 2, false);
std::cout << M << std::endl;
std::cout << "------------------------" << std::endl;
vpMatrix A(1, 6), B;
A = 1.0;
// vMe=1.0;
B = A * vMe;
std::cout << "------------------------" << std::endl;
std::cout << "--- TEST vpRowVector * vpColVector" << std::endl;
std::cout << "------------------------" << std::endl;
r[0] = 2;
r[1] = 3;
r[2] = 4;
c[0] = 1;
c[1] = 2;
c[2] = -1;
double rc = r * c;
r.print(std::cout, 2, "r");
c.print(std::cout, 2, "c");
std::cout << "r * c = " << rc << std::endl;
std::cout << "------------------------" << std::endl;
std::cout << "--- TEST vpRowVector * vpMatrix" << std::endl;
std::cout << "------------------------" << std::endl;
M.resize(3, 3);
M.eye(3);
M[1][0] = 1.5;
M[2][0] = 2.3;
vpRowVector rM = r * M;
r.print(std::cout, 2, "r");
M.print(std::cout, 10, "M");
std::cout << "r * M = " << rM << std::endl;
std::cout << "------------------------" << std::endl;
std::cout << "--- TEST vpGEMM " << std::endl;
std::cout << "------------------------" << std::endl;
M.resize(3, 3);
M.eye(3);
vpMatrix N(3, 3);
N[0][0] = 2;
N[1][0] = 1.2;
N[1][2] = 0.6;
N[2][2] = 0.25;
vpMatrix C(3, 3);
C.eye(3);
// realise the operation D = 2 * M^T * N + 3 C
vpGEMM(M, N, 2, C, 3, D, VP_GEMM_A_T);
std::cout << D << std::endl;
}
{
std::cout << "------------------------" << std::endl;
std::cout << "--- TEST vpMatrix insert() with same colNum " << std::endl;
std::cout << "------------------------" << std::endl;
const unsigned int nb = 100; // 10000; //for ctest otherwise takes too
// long time with static call
const unsigned int size = 100;
vpMatrix m_big(nb * size, 6);
std::vector<vpMatrix> submatrices(nb);
for (size_t cpt = 0; cpt < submatrices.size(); cpt++) {
vpMatrix m(size, 6);
for (unsigned int i = 0; i < m.getRows(); i++) {
for (unsigned int j = 0; j < m.getCols(); j++) {
m[i][j] = getRandomValues(-100.0, 100.0);
}
}
submatrices[cpt] = m;
}
double t = vpTime::measureTimeMs();
for (unsigned int i = 0; i < nb; i++) {
m_big.insert(submatrices[(size_t)i], i * size, 0);
}
std::cout << "Matrix insert(): " << t << " ms" << std::endl;
for (unsigned int cpt = 0; cpt < nb; cpt++) {
for (unsigned int i = 0; i < size; i++) {
for (unsigned int j = 0; j < 6; j++) {
if (!vpMath::equal(m_big[cpt * size + i][j], submatrices[(size_t)cpt][i][j],
std::numeric_limits<double>::epsilon())) {
std::cerr << "Problem with vpMatrix insert()!" << std::endl;
return EXIT_FAILURE;
}
}
}
}
// Try to insert empty matrices
vpMatrix m1(2, 3), m2, m3;
m1.insert(m2, 0, 0);
m3.insert(m2, 0, 0);
std::cout << "Insert empty matrices:" << std::endl;
std::cout << "m1:\n" << m1 << std::endl;
std::cout << "m2:\n" << m2 << std::endl;
std::cout << "m3:\n" << m3 << std::endl;
std::cout << "------------------------" << std::endl;
std::cout << "--- TEST vpMatrix stack()" << std::endl;
std::cout << "------------------------" << std::endl;
{
vpMatrix L, L2(2, 6);
L2 = 2;
L.stack(L2);
std::cout << "L:\n" << L << std::endl;
L2.resize(3, 6);
L2 = 3;
L.stack(L2);
std::cout << "L:\n" << L << std::endl;
}
vpMatrix m_big_stack;
for (unsigned int i = 0; i < nb; i++) {
m_big_stack.stack(submatrices[(size_t)i]);
}
std::cout << "\nMatrix stack(): " << t << " ms" << std::endl;
if (!equalMatrix(m_big, m_big_stack)) {
std::cerr << "Problem with vpMatrix stack()!" << std::endl;
return EXIT_FAILURE;
}
std::cout << "------------------------" << std::endl;
std::cout << "--- TEST vpMatrix stack(vpRowVector)" << std::endl;
std::cout << "------------------------" << std::endl;
vpMatrix m_big_stack_row;
for (unsigned int i = 0; i < m_big_stack.getRows(); i++) {
m_big_stack_row.stack(m_big_stack.getRow(i));
}
std::cout << "\nMatrix stack(vpRowVector): " << t << " ms" << std::endl;
if (!equalMatrix(m_big_stack, m_big_stack_row)) {
std::cerr << "Problem with vpMatrix stack(vpRowVector)!" << std::endl;
return EXIT_FAILURE;
}
std::cout << "------------------------" << std::endl;
std::cout << "--- TEST vpMatrix::stack()" << std::endl;
std::cout << "------------------------" << std::endl;
{
vpMatrix L, L2(2, 6), L_tmp;
L2 = 2;
vpMatrix::stack(L_tmp, L2, L);
std::cout << "L:\n" << L << std::endl;
L2.resize(3, 6);
L2 = 3;
L_tmp = L;
vpMatrix::stack(L_tmp, L2, L);
std::cout << "L:\n" << L << std::endl;
}
vpMatrix m_big_stack_static, m_big_stack_static_tmp;
for (unsigned int i = 0; i < nb; i++) {
vpMatrix::stack(m_big_stack_static_tmp, submatrices[(size_t)i], m_big_stack_static);
m_big_stack_static_tmp = m_big_stack_static;
}
std::cout << "\nMatrix::stack(): " << t << " ms" << std::endl;
if (!equalMatrix(m_big, m_big_stack_static)) {
std::cerr << "Problem with vpMatrix::stack()!" << std::endl;
return EXIT_FAILURE;
}
std::cout << "------------------------" << std::endl;
std::cout << "--- TEST vpMatrix::stack(vpMatrix, vpRowVector, vpMatrix)" << std::endl;
std::cout << "------------------------" << std::endl;
vpMatrix m_big_stack_static_row, m_big_stack_static_row_tmp;
for (unsigned int i = 0; i < m_big_stack_static.getRows(); i++) {
vpMatrix::stack(m_big_stack_static_row_tmp, m_big_stack_static.getRow(i), m_big_stack_static_row);
m_big_stack_static_row_tmp = m_big_stack_static_row;
}
std::cout << "\nMatrix::stack(vpMatrix, vpRowVector, vpMatrix): " << t << " ms" << std::endl;
if (!equalMatrix(m_big_stack_static, m_big_stack_static_row)) {
std::cerr << "Problem with vpMatrix::stack(vpMatrix, vpRowVector, "
"vpMatrix)!"
<< std::endl;
return EXIT_FAILURE;
}
}
{
vpMatrix m1(11, 9), m2(3, 4);
for (unsigned int i = 0; i < m2.getRows(); i++) {
for (unsigned int j = 0; j < m2.getCols(); j++) {
m2[i][j] = getRandomValues(-100.0, 100.0);
}
}
unsigned int offset_i = 4, offset_j = 3;
m1.insert(m2, offset_i, offset_j);
for (unsigned int i = 0; i < m2.getRows(); i++) {
for (unsigned int j = 0; j < m2.getCols(); j++) {
if (!vpMath::equal(m1[i + offset_i][j + offset_j], m2[i][j], std::numeric_limits<double>::epsilon())) {
std::cerr << "Problem with vpMatrix insert()!" << std::endl;
return EXIT_FAILURE;
}
}
}
offset_i = 4, offset_j = 5;
m1.insert(m2, offset_i, offset_j);
for (unsigned int i = 0; i < m2.getRows(); i++) {
for (unsigned int j = 0; j < m2.getCols(); j++) {
if (!vpMath::equal(m1[i + offset_i][j + offset_j], m2[i][j], std::numeric_limits<double>::epsilon())) {
std::cerr << "Problem with vpMatrix insert()!" << std::endl;
return EXIT_FAILURE;
}
}
}
offset_i = 8, offset_j = 5;
m1.insert(m2, offset_i, offset_j);
for (unsigned int i = 0; i < m2.getRows(); i++) {
for (unsigned int j = 0; j < m2.getCols(); j++) {
if (!vpMath::equal(m1[i + offset_i][j + offset_j], m2[i][j], std::numeric_limits<double>::epsilon())) {
std::cerr << "Problem with vpMatrix insert()!" << std::endl;
return EXIT_FAILURE;
}
}
}
}
{
std::cout << "------------------------" << std::endl;
std::cout << "--- TEST vpMatrix::juxtaposeMatrices()" << std::endl;
std::cout << "------------------------" << std::endl;
vpMatrix A(5, 6), B(5, 4);
for (unsigned int i = 0; i < A.getRows(); i++) {
for (unsigned int j = 0; j < A.getCols(); j++) {
A[i][j] = i * A.getCols() + j;
if (j < B.getCols()) {
B[i][j] = (i * B.getCols() + j) * 10;
}
}
}
vpMatrix juxtaposeM;
vpMatrix::juxtaposeMatrices(A, B, juxtaposeM);
std::cout << "juxtaposeM:\n" << juxtaposeM << std::endl;
}
#if defined(VISP_HAVE_LAPACK) && !defined(VISP_HAVE_LAPACK_BUILT_IN)
{
std::cout << "------------------------" << std::endl;
std::cout << "--- BENCHMARK dgemm/dgemv" << std::endl;
std::cout << "------------------------" << std::endl;
size_t nb_matrices = 10000;
unsigned int rows = 200, cols = 6;
double min = -1.0, max = 1.0;
std::vector<vpMatrix> vec_A, vec_B, vec_C, vec_C_regular;
vec_C.reserve(nb_matrices);
vec_C_regular.reserve(nb_matrices);
for (size_t i = 0; i < nb_matrices; i++) {
vec_A.push_back(generateRandomMatrix(cols, rows, min, max));
vec_B.push_back(generateRandomMatrix(rows, cols, min, max));
}
double t = vpTime::measureTimeMs();
for (size_t i = 0; i < nb_matrices; i++) {
vec_C.push_back(vec_A[i] * vec_B[i]);
}
std::cout << nb_matrices << " matrix multiplication: (6x200) x (200x6)" << std::endl;
std::cout << "Lapack: " << t << " ms" << std::endl;
std::cout << "vec_C:\n" << vec_C.back() << std::endl;
for (size_t i = 0; i < nb_matrices; i++) {
vec_C_regular.push_back(dgemm_regular(vec_A[i], vec_B[i]));
}
std::cout << "\nRegular: " << t << " ms" << std::endl;
std::cout << "vec_C_regular:\n" << vec_C_regular.back() << std::endl;
vpMatrix A = generateRandomMatrix(480, 640, min, max), B = generateRandomMatrix(640, 480, min, max);
vpMatrix AB, AB_regular;
AB = A * B;
std::cout << "\nMatrix multiplication: (480x640) x (640x480)" << std::endl;
std::cout << "Lapack: " << t << " ms" << std::endl;
std::cout << "Min=" << AB.getMinValue() << " ; Max=" << AB.getMaxValue() << std::endl;
AB_regular = dgemm_regular(A, B);
std::cout << "Regular: " << t << " ms" << std::endl;
std::cout << "Min=" << AB_regular.getMinValue() << " ; Max=" << AB_regular.getMaxValue() << std::endl;
bool res = equalMatrix(AB, AB_regular, 1e-9);
std::cout << "Check result: " << res << std::endl;
if (!res) {
std::cerr << "Problem with matrix multiplication!" << std::endl;
return EXIT_FAILURE;
}
int nb_iterations = 1000;
vpMatrix L = generateRandomMatrix(1000, 6, min, max);
vpMatrix LTL, LTL_regular;
for (int i = 0; i < nb_iterations; i++)
LTL = L.AtA();
std::cout << "\n" << nb_iterations << " iterations of AtA for size: (1000x6)" << std::endl;
std::cout << "Lapack: " << t << " ms" << std::endl;
std::cout << "LTL:\n" << LTL << std::endl;
for (int i = 0; i < nb_iterations; i++)
LTL_regular = AtA_regular(L);
std::cout << "\nRegular: " << t << " ms" << std::endl;
std::cout << "LTL_regular:\n" << LTL_regular << std::endl;
res = equalMatrix(LTL, LTL_regular, 1e-9);
std::cout << "Check result: " << res << std::endl;
if (!res) {
std::cerr << "Problem with vpMatrix::AtA()!" << std::endl;
return EXIT_FAILURE;
}
vpMatrix LT = generateRandomMatrix(6, 1000, min, max);
vpColVector R = generateRandomVector(1000, min, max);
vpMatrix LTR, LTR_regular;
for (int i = 0; i < nb_iterations; i++)
LTR = LT * R;
std::cout << "\n"
<< nb_iterations
<< " iterations of matrix vector multiplication: (6x1000) x "
"(1000x1)"
<< std::endl;
std::cout << "Lapack: " << t << " ms" << std::endl;
std::cout << "LTR:\n" << LTR.t() << std::endl;
for (int i = 0; i < nb_iterations; i++)
LTR_regular = dgemv_regular(LT, R);
std::cout << "\nRegular: " << t << " ms" << std::endl;
std::cout << "LTR_regular:\n" << LTR_regular.t() << std::endl;
res = equalMatrix(LTR, LTR_regular, 1e-9);
std::cout << "Check result: " << res << std::endl;
if (!res) {
std::cerr << "Problem with dgemv!" << std::endl;
return EXIT_FAILURE;
}
vpVelocityTwistMatrix V(getRandomValues(min, max), getRandomValues(min, max), getRandomValues(min, max),
getRandomValues(min, max), getRandomValues(min, max), getRandomValues(min, max));
vpMatrix LV, LV_regular;
for (int i = 0; i < nb_iterations; i++)
LV = L * V;
std::cout << "\n"
<< nb_iterations
<< " iterations of matrix velocity twist matrix "
"multiplication: (1000x6) x (6x6)"
<< std::endl;
std::cout << "Lapack: " << t << " ms" << std::endl;
for (int i = 0; i < nb_iterations; i++)
LV_regular = mat_mul_twist_matrix(L, V);
std::cout << "Regular: " << t << " ms" << std::endl;
res = equalMatrix(LV, LV_regular, 1e-9);
std::cout << "Check result: " << res << std::endl;
if (!res) {
std::cerr << "Problem with matrix and velocity twist matrix multiplication!" << std::endl;
return EXIT_FAILURE;
}
}
#endif
#ifdef VISP_HAVE_CPP11_COMPATIBILITY
{
std::vector<vpMatrix> vec_mat;
vec_mat.emplace_back(5, 5);
vpMatrix A(4, 4), B(4, 4);
A = 1;
B = 2;
vpMatrix res = A + B;
std::cout << "\n1) A+B:\n" << res << std::endl;
vpMatrix res2;
res2 = A + B;
std::cout << "\n2) A+B:\n" << res2 << std::endl;
}
#endif
{
std::cout << "------------------------" << std::endl;
std::cout << "--- TEST vpMatrix::hadamard()" << std::endl;
std::cout << "------------------------" << std::endl;
vpMatrix M1(3, 5), M2(3, 5);
for (unsigned int i = 0; i < M1.size(); i++) {
M1.data[i] = i;
M2.data[i] = i + 2;
}
std::cout << "M1:\n" << M1 << std::endl;
std::cout << "\nM2:\n" << M2 << std::endl;
M2 = M1.hadamard(M2);
std::cout << "\nRes:\n" << M2 << std::endl;
}
std::cout << "\nAll tests succeed" << std::endl;
return EXIT_SUCCESS;
} catch (vpException &e) {
std::cout << "Catch an exception: " << e << std::endl;
return EXIT_FAILURE;
}
}