Visual Servoing Platform  version 3.1.0
sonarPioneerReader.cpp

example showing how to connect and read sonar data from a Pioneer mobile robot->

/****************************************************************************
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2017 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Example that shows how to control a Pioneer mobile robot in ViSP.
*
* Authors:
* Fabien Spindler
*
*****************************************************************************/
#include <iostream>
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpDisplay.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpTime.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/io/vpImageIo.h>
#include <visp3/robot/vpRobotPioneer.h> // Include before vpDisplayX to avoid build issues
#ifndef VISP_HAVE_PIONEER
int main()
{
std::cout << "\nThis example requires Aria 3rd party library. You should "
"install it.\n"
<< std::endl;
return 0;
}
#else
ArSonarDevice sonar;
#if defined(VISP_HAVE_X11)
#elif defined(VISP_HAVE_GDI)
#endif
static bool isInitialized = false;
static int half_size = 256 * 2;
void sonarPrinter(void)
{
fprintf(stdout, "in sonarPrinter()\n");
fflush(stdout);
double scale = (double)half_size / (double)sonar.getMaxRange();
/*
ArSonarDevice *sd;
std::list<ArPoseWithTime *>::iterator it;
std::list<ArPoseWithTime *> *readings;
ArPose *pose;
sd = (ArSonarDevice *)robot->findRangeDevice("sonar");
if (sd != NULL)
{
sd->lockDevice();
readings = sd->getCurrentBuffer();
if (readings != NULL)
{
for (it = readings->begin(); it != readings->end(); ++it)
{
pose = (*it);
//pose->log();
}
}
sd->unlockDevice();
}
*/
double range;
double angle;
/*
* example to show how to find closest readings within polar sections
*/
printf("Closest readings within polar sections:\n");
double start_angle = -45;
double end_angle = 45;
range = sonar.currentReadingPolar(start_angle, end_angle, &angle);
printf(" front quadrant: %5.0f ", range);
// if (range != sonar.getMaxRange())
if (std::fabs(range - sonar.getMaxRange()) > std::numeric_limits<double>::epsilon())
printf("%3.0f ", angle);
printf("\n");
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI)
// if (isInitialized && range != sonar.getMaxRange())
if (isInitialized && std::fabs(range - sonar.getMaxRange()) > std::numeric_limits<double>::epsilon()) {
double x = range * cos(vpMath::rad(angle)); // position of the obstacle in the sensor frame
double y = range * sin(vpMath::rad(angle));
// Conversion in pixels so that the robot frame is in the middle of the
// image
double j = -y * scale + half_size; // obstacle position
double i = -x * scale + half_size;
vpDisplay::displayLine(I, half_size, half_size, 0, 0, vpColor::red, 5);
vpDisplay::displayLine(I, half_size, half_size, 0, 2 * half_size - 1, vpColor::red, 5);
vpDisplay::displayLine(I, half_size, half_size, i, j, vpColor::green, 3);
}
#endif
range = sonar.currentReadingPolar(-135, -45, &angle);
printf(" right quadrant: %5.0f ", range);
// if (range != sonar.getMaxRange())
if (std::fabs(range - sonar.getMaxRange()) > std::numeric_limits<double>::epsilon())
printf("%3.0f ", angle);
printf("\n");
range = sonar.currentReadingPolar(45, 135, &angle);
printf(" left quadrant: %5.0f ", range);
// if (range != sonar.getMaxRange())
if (std::fabs(range - sonar.getMaxRange()) > std::numeric_limits<double>::epsilon())
printf("%3.0f ", angle);
printf("\n");
range = sonar.currentReadingPolar(-135, 135, &angle);
printf(" back quadrant: %5.0f ", range);
// if (range != sonar.getMaxRange())
if (std::fabs(range - sonar.getMaxRange()) > std::numeric_limits<double>::epsilon())
printf("%3.0f ", angle);
printf("\n");
/*
* example to show how get all sonar sensor data
*/
ArSensorReading *reading;
for (int sensor = 0; sensor < robot->getNumSonar(); sensor++) {
reading = robot->getSonarReading(sensor);
if (reading != NULL) {
angle = reading->getSensorTh();
range = reading->getRange();
double sx = reading->getSensorX(); // position of the sensor in the robot frame
double sy = reading->getSensorY();
double ox = range * cos(vpMath::rad(angle)); // position of the obstacle in the sensor frame
double oy = range * sin(vpMath::rad(angle));
double x = sx + ox; // position of the obstacle in the robot frame
double y = sy + oy;
// Conversion in pixels so that the robot frame is in the middle of the
// image
double sj = -sy * scale + half_size; // sensor position
double si = -sx * scale + half_size;
double j = -y * scale + half_size; // obstacle position
double i = -x * scale + half_size;
// printf("%d x: %.1f y: %.1f th: %.1f d: %d\n", sensor,
// reading->getSensorX(),
// reading->getSensorY(), reading->getSensorTh(),
// reading->getRange());
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI)
// if (isInitialized && range != sonar.getMaxRange())
if (isInitialized && std::fabs(range - sonar.getMaxRange()) > std::numeric_limits<double>::epsilon()) {
vpDisplay::displayLine(I, si, sj, i, j, vpColor::blue, 2);
char legend[15];
sprintf(legend, "%d: %1.2fm", sensor, float(range) / 1000);
vpDisplay::displayCharString(I, i - 7, j + 7, legend, vpColor::blue);
}
#endif
}
}
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI)
if (isInitialized)
#endif
fflush(stdout);
}
int main(int argc, char **argv)
{
try {
ArArgumentParser parser(&argc, argv);
parser.loadDefaultArguments();
robot = new vpRobotPioneer;
// ArRobotConnector connects to the robot, get some initial data from it
// such as type and name, and then loads parameter files for this robot.
ArRobotConnector robotConnector(&parser, robot);
if (!robotConnector.connectRobot()) {
ArLog::log(ArLog::Terse, "Could not connect to the robot");
if (parser.checkHelpAndWarnUnparsed()) {
Aria::logOptions();
Aria::exit(1);
}
}
if (!Aria::parseArgs()) {
Aria::logOptions();
Aria::shutdown();
return false;
}
std::cout << "Robot connected" << std::endl;
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI)
// Create a display to show sensor data
if (isInitialized == false) {
I.resize((unsigned int)half_size * 2, (unsigned int)half_size * 2);
I = 255;
#if defined(VISP_HAVE_X11)
d = new vpDisplayX;
#elif defined(VISP_HAVE_GDI)
d = new vpDisplayGDI;
#endif
d->init(I, -1, -1, "Sonar range data");
isInitialized = true;
}
#endif
// Activates the sonar
ArGlobalFunctor sonarPrinterCB(&sonarPrinter);
robot->addRangeDevice(&sonar);
robot->addUserTask("Sonar printer", 50, &sonarPrinterCB);
robot->useSonar(true); // activates the sonar device usage
// Robot velocities
vpColVector v_mes(2);
for (int i = 0; i < 1000; i++) {
double t = vpTime::measureTimeMs();
std::cout << "Trans. vel= " << v_mes[0] << " m/s, Rot. vel=" << vpMath::deg(v_mes[1]) << " deg/s" << std::endl;
std::cout << "Left wheel vel= " << v_mes[0] << " m/s, Right wheel vel=" << v_mes[1] << " m/s" << std::endl;
std::cout << "Battery=" << robot->getBatteryVoltage() << std::endl;
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI)
if (isInitialized) {
// A mouse click to exit
// Before exiting save the last sonar image
if (vpDisplay::getClick(I, false) == true) {
{
// Set the default output path
std::string opath;
#if !defined(_WIN32) && (defined(__unix__) || defined(__unix) || (defined(__APPLE__) && defined(__MACH__))) // UNIX
opath = "/tmp";
#elif defined(_WIN32)
opath = "C:\\temp";
#endif
std::string username = vpIoTools::getUserName();
// Append to the output path string, the login name of the user
opath = vpIoTools::createFilePath(opath, username);
// Test if the output path exist. If no try to create it
if (vpIoTools::checkDirectory(opath) == false) {
try {
// Create the dirname
} catch (...) {
std::cerr << std::endl << "ERROR:" << std::endl;
std::cerr << " Cannot create " << opath << std::endl;
exit(-1);
}
}
std::string filename = opath + "/sonar.png";
vpImageIo::write(C, filename);
}
break;
}
}
#endif
vpTime::wait(t, 40);
}
ArLog::log(ArLog::Normal, "simpleMotionCommands: Stopping.");
robot->lock();
robot->stop();
robot->unlock();
ArUtil::sleep(1000);
robot->lock();
ArLog::log(ArLog::Normal,
"simpleMotionCommands: Pose=(%.2f,%.2f,%.2f), Trans. "
"Vel=%.2f, Rot. Vel=%.2f, Battery=%.2fV",
robot->getX(), robot->getY(), robot->getTh(), robot->getVel(), robot->getRotVel(),
robot->getBatteryVoltage());
robot->unlock();
std::cout << "Ending robot thread..." << std::endl;
robot->stopRunning();
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI)
if (isInitialized) {
if (d != NULL)
delete d;
}
#endif
// wait for the thread to stop
robot->waitForRunExit();
delete robot;
// exit
ArLog::log(ArLog::Normal, "simpleMotionCommands: Exiting.");
return 0;
} catch (vpException &e) {
std::cout << "Catch an exception: " << e << std::endl;
return 1;
}
}
#endif