Visual Servoing Platform  version 3.1.0
servoViper850Point2DArtVelocity-jointAvoidance-gpa.cpp

Joint limits avoidance using a gradient projection approach.

Implemented from [27] and section II.B in [4].

/****************************************************************************
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2017 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* tests the control law
* eye-in-hand control
* velocity computed in articular
*
* Authors:
* Eric Marchand
* Fabien Spindler
*
*****************************************************************************/
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpDebug.h> // Debug trace
#include <fstream>
#include <iostream>
#include <sstream>
#include <stdio.h>
#include <stdlib.h>
#if (defined(VISP_HAVE_VIPER850) && defined(VISP_HAVE_DC1394) && defined(VISP_HAVE_DISPLAY))
#include <visp3/blob/vpDot2.h>
#include <visp3/core/vpDisplay.h>
#include <visp3/core/vpException.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpPoint.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpPlot.h>
#include <visp3/robot/vpRobotViper850.h>
#include <visp3/sensor/vp1394TwoGrabber.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
int main()
{
try {
vpServo task;
bool reset = false;
vp1394TwoGrabber g(reset);
g.open(I);
g.acquire(I);
#ifdef VISP_HAVE_X11
vpDisplayX display(I, 800, 100, "Current image");
#elif defined(VISP_HAVE_OPENCV)
vpDisplayOpenCV display(I, 800, 100, "Current image");
#elif defined(VISP_HAVE_GTK)
vpDisplayGTK display(I, 800, 100, "Current image");
#endif
vpColVector jointMin(6), jointMax(6);
jointMin = robot.getJointMin();
jointMax = robot.getJointMax();
vpColVector Qmin(6), tQmin(6);
vpColVector Qmax(6), tQmax(6);
vpColVector Qmiddle(6);
vpColVector data(10);
double rho = 0.15;
for (unsigned int i = 0; i < 6; i++) {
Qmin[i] = jointMin[i] + 0.5 * rho * (jointMax[i] - jointMin[i]);
Qmax[i] = jointMax[i] - 0.5 * rho * (jointMax[i] - jointMin[i]);
}
Qmiddle = (Qmin + Qmax) / 2.;
double rho1 = 0.1;
for (unsigned int i = 0; i < 6; i++) {
tQmin[i] = Qmin[i] + 0.5 * (rho1) * (Qmax[i] - Qmin[i]);
tQmax[i] = Qmax[i] - 0.5 * (rho1) * (Qmax[i] - Qmin[i]);
}
// Create a window with two graphics
// - first graphic to plot q(t), Qmin, Qmax, tQmin and tQmax
// - second graphic to plot the cost function h_s
vpPlot plot(2);
// The first graphic contains 10 data to plot: q(t), Qmin, Qmax, tQmin and
// tQmax
plot.initGraph(0, 10);
// The second graphic contains 1 curve, the cost function h_s
plot.initGraph(1, 1);
// For the first graphic :
// - along the x axis the expected values are between 0 and 200
// - along the y axis the expected values are between -1.2 and 1.2
plot.initRange(0, 0., 200., -1.2, 1.2);
plot.setTitle(0, "Joint behavior");
// For the second graphic :
// - along the x axis the expected values are between 0 and 200 and
// the step is 1
// - along the y axis the expected values are between 0 and 0.0001 and the
// step is 0.00001
plot.initRange(1, 0., 200., 0., 1e-4);
plot.setTitle(1, "Cost function");
// For the first graphic, set the curves legend
char legend[10];
for (unsigned int i = 0; i < 6; i++) {
sprintf(legend, "q%u", i + 1);
plot.setLegend(0, i, legend);
}
plot.setLegend(0, 6, "tQmin");
plot.setLegend(0, 7, "tQmax");
plot.setLegend(0, 8, "Qmin");
plot.setLegend(0, 9, "Qmax");
// Set the curves color
plot.setColor(0, 0, vpColor::red);
plot.setColor(0, 1, vpColor::green);
plot.setColor(0, 2, vpColor::blue);
plot.setColor(0, 4, vpColor(0, 128, 0));
plot.setColor(0, 5, vpColor::cyan);
for (unsigned int i = 6; i < 10; i++)
plot.setColor(0, i, vpColor::black); // for Q and tQ [min,max]
// For the second graphic, set the curves legend
plot.setLegend(1, 0, "h_s");
double beta = 1;
// Set the amplitude of the control law due to the secondary task
std::cout << " Give the parameters beta (1) : ";
std::cin >> beta;
vpDot2 dot;
std::cout << "Click on a dot..." << std::endl;
dot.initTracking(I);
vpImagePoint cog = dot.getCog();
// Update camera parameters
robot.getCameraParameters(cam, I);
// sets the current position of the visual feature
vpFeatureBuilder::create(p, cam, dot); // retrieve x,y and Z of the vpPoint structure
p.set_Z(1);
// sets the desired position of the visual feature
pd.buildFrom(0, 0, 1);
// Define the task
// - we want an eye-in-hand control law
// - articular velocity are computed
robot.get_cVe(cVe);
std::cout << cVe << std::endl;
task.set_cVe(cVe);
// - Set the Jacobian (expressed in the end-effector frame)") ;
vpMatrix eJe;
robot.get_eJe(eJe);
task.set_eJe(eJe);
// - we want to see a point on a point..") ;
std::cout << std::endl;
task.addFeature(p, pd);
// - set the gain
task.setLambda(0.8);
// Display task information " ) ;
task.print();
int iter = 0;
std::cout << "\nHit CTRL-C to stop the loop...\n" << std::flush;
for (;;) {
iter++;
// Acquire a new image from the camera
g.acquire(I);
// Display this image
// Achieve the tracking of the dot in the image
dot.track(I);
cog = dot.getCog();
// Display a green cross at the center of gravity position in the image
// Get the measured joint positions of the robot
// Update the point feature from the dot location
// Get the jacobian of the robot
robot.get_eJe(eJe);
// Update this jacobian in the task structure. It will be used to
// compute the velocity skew (as an articular velocity) qdot = -lambda *
// L^+ * cVe * eJe * (s-s*)
task.set_eJe(eJe);
vpColVector prim_task;
vpColVector e2(6);
// Compute the visual servoing skew vector
prim_task = task.computeControlLaw();
vpColVector sec_task(6);
double h_s = 0;
{
// joint limit avoidance with secondary task
vpColVector de2dt(6);
de2dt = 0;
e2 = 0;
for (unsigned int i = 0; i < 6; i++) {
double S = 0;
if (q[i] > tQmax[i])
S = q[i] - tQmax[i];
if (q[i] < tQmin[i])
S = q[i] - tQmin[i];
double D = (Qmax[i] - Qmin[i]);
h_s += vpMath::sqr(S) / D;
e2[i] = S / D;
}
h_s = beta * h_s / 2.0; // cost function
e2 *= beta;
// std::cout << e2.t() << std::endl;
std::cout << "Cost function h_s: " << h_s << std::endl;
sec_task = task.secondaryTask(e2, de2dt);
}
v = prim_task + sec_task;
// Display the current and desired feature points in the image display
vpServoDisplay::display(task, cam, I);
// Apply the computed joint velocities to the robot
{
// Add the material to plot curves
// q normalized between (entre -1 et 1)
for (unsigned int i = 0; i < 6; i++) {
data[i] = (q[i] - Qmiddle[i]);
data[i] /= (Qmax[i] - Qmin[i]);
data[i] *= 2;
}
unsigned int joint = 2;
data[6] = 2 * (tQmin[joint] - Qmiddle[joint]) / (Qmax[joint] - Qmin[joint]);
data[7] = 2 * (tQmax[joint] - Qmiddle[joint]) / (Qmax[joint] - Qmin[joint]);
data[8] = -1;
data[9] = 1;
plot.plot(0, iter, data); // plot q, Qmin, Qmax, tQmin, tQmax
plot.plot(1, 0, iter, h_s); // plot the cost function
}
}
// Display task information
task.print();
task.kill();
return 0;
} catch (vpException &e) {
std::cout << "Catch an exception: " << e.getMessage() << std::endl;
return 0;
}
}
#else
int main()
{
vpERROR_TRACE("You do not have an Viper 850 robot or a firewire "
"framegrabber connected to your computer...");
}
#endif