Visual Servoing Platform  version 3.1.0
servoSimuFourPoints2DPolarCamVelocityDisplay.cpp

Simulation of a 2D visual servoing:Simulation of a 2D visual servoing:

Interaction matrix is computed as the mean of the current and desired interaction matrix.

/****************************************************************************
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2017 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Simulation of a 2D visual servoing using 4 points with polar
* coordinates as visual feature.
*
* Authors:
* Fabien Spindler
*
*****************************************************************************/
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpDebug.h>
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GTK) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_OPENCV))
#include <stdio.h>
#include <stdlib.h>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpImagePoint.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpMeterPixelConversion.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpProjectionDisplay.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePointPolar.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
// List of allowed command line options
#define GETOPTARGS "cdh"
void usage(const char *name, const char *badparam);
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display);
void usage(const char *name, const char *badparam)
{
fprintf(stdout, "\n\
Tests a control law with the following characteristics:\n\
- eye-in-hand control\n\
- articular velocity are computed\n\
- servo on 4 points,\n\
- internal and external camera view displays.\n\
\n\
SYNOPSIS\n\
%s [-c] [-d] [-h]\n", name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
-c\n\
Disable the mouse click. Useful to automaze the \n\
execution of this program without humain intervention.\n\
\n\
-d \n\
Turn off the display.\n\
\n\
-h\n\
Print the help.\n");
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'c':
click_allowed = false;
break;
case 'd':
display = false;
break;
case 'h':
usage(argv[0], NULL);
return false;
break;
default:
usage(argv[0], optarg_);
return false;
break;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], NULL);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
int main(int argc, const char **argv)
{
try {
// Log file creation in /tmp/$USERNAME/log.dat
// This file contains by line:
// - the 6 computed camera velocities (m/s, rad/s) to achieve the task
// - the 6 mesured camera velocities (m/s, rad/s)
// - the 6 mesured joint positions (m, rad)
// - the 8 values of s - s*
std::string username;
// Get the user login name
// Create a log filename to save velocities...
std::string logdirname;
#if defined(_WIN32)
logdirname = "C:/temp/" + username;
#else
logdirname = "/tmp/" + username;
#endif
// Test if the output path exist. If no try to create it
if (vpIoTools::checkDirectory(logdirname) == false) {
try {
// Create the dirname
} catch (...) {
std::cerr << std::endl << "ERROR:" << std::endl;
std::cerr << " Cannot create " << logdirname << std::endl;
exit(-1);
}
}
std::string logfilename;
logfilename = logdirname + "/log.dat";
// Open the log file name
std::ofstream flog(logfilename.c_str());
bool opt_click_allowed = true;
bool opt_display = true;
// Read the command line options
if (getOptions(argc, argv, opt_click_allowed, opt_display) == false) {
exit(-1);
}
// We open two displays, one for the internal camera view, the other one for
// the external view, using either X11, GTK or GDI.
#if defined VISP_HAVE_X11
vpDisplayX displayInt;
vpDisplayX displayExt;
#elif defined VISP_HAVE_GTK
vpDisplayGTK displayInt;
vpDisplayGTK displayExt;
#elif defined VISP_HAVE_GDI
vpDisplayGDI displayInt;
vpDisplayGDI displayExt;
#elif defined VISP_HAVE_OPENCV
vpDisplayOpenCV displayInt;
vpDisplayOpenCV displayExt;
#endif
// open a display for the visualization
vpImage<unsigned char> Iint(300, 300, 0);
vpImage<unsigned char> Iext(300, 300, 0);
if (opt_display) {
displayInt.init(Iint, 0, 0, "Internal view");
displayExt.init(Iext, 330, 000, "External view");
}
vpProjectionDisplay externalview;
double px, py;
px = py = 500;
double u0, v0;
u0 = 150, v0 = 160;
vpCameraParameters cam(px, py, u0, v0);
int i;
vpServo task;
std::cout << std::endl;
std::cout << "----------------------------------------------" << std::endl;
std::cout << " Test program for vpServo " << std::endl;
std::cout << " Eye-in-hand task control, articular velocity are computed" << std::endl;
std::cout << " Simulation " << std::endl;
std::cout << " task : servo 4 points " << std::endl;
std::cout << "----------------------------------------------" << std::endl;
std::cout << std::endl;
// #define TRANS_Z_PURE
// #define TRANS_X_PURE
// #define ROT_Z_PURE
// #define ROT_X_PURE
#define COMPLEX
//#define PROBLEM
#if defined(TRANS_Z_PURE)
// sets the initial camera location
// sets the desired camera location
#elif defined(TRANS_X_PURE)
// sets the initial camera location
// sets the desired camera location
vpHomogeneousMatrix cMod(0.5, 0.3, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
#elif defined(ROT_Z_PURE)
// sets the initial camera location
// sets the desired camera location
#elif defined(ROT_X_PURE)
// sets the initial camera location
// sets the desired camera location
#elif defined(COMPLEX)
// sets the initial camera location
// sets the desired camera location
vpHomogeneousMatrix cMod(0, 0, 2.5, vpMath::rad(45), vpMath::rad(10), vpMath::rad(30));
#elif defined(PROBLEM)
// Bad behavior with an interaction matrix computed from the desired
// features sets the initial camera location
// sets the desired camera location
vpHomogeneousMatrix cMod(0.4, 0.2, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
#endif
// Compute the position of the object in the world frame
robot.getPosition(wMc);
wMo = wMc * cMo;
vpHomogeneousMatrix cextMo(0, 0, 6, vpMath::rad(40), vpMath::rad(10), vpMath::rad(60));
// sets the point coordinates in the object frame
vpPoint point[4];
point[0].setWorldCoordinates(-0.25, -0.25, 0);
point[1].setWorldCoordinates(0.25, -0.25, 0);
point[2].setWorldCoordinates(0.25, 0.25, 0);
point[3].setWorldCoordinates(-0.25, 0.25, 0);
for (i = 0; i < 4; i++)
externalview.insert(point[i]);
// sets the desired position of the feature point s*"
// computes the point coordinates in the desired camera frame and
// its 2D coordinates
for (i = 0; i < 4; i++) {
point[i].track(cMod);
// Computes the polar coordinates from the image point
// cartesian coordinates
vpFeatureBuilder::create(pd[i], point[i]);
}
// computes the point coordinates in the camera frame and its 2D
// coordinates
for (i = 0; i < 4; i++)
point[i].track(cMo);
// sets the desired position of the point
for (i = 0; i < 4; i++) {
// retrieve x,y and Z of the vpPoint structure to initialize the
// visual feature
vpFeatureBuilder::create(p[i], point[i]);
}
// Define the task;
// - we want an eye-in-hand control law
// - articular velocity are computed
// task.setInteractionMatrixType(vpServo::MEAN) ;
// task.setInteractionMatrixType(vpServo::DESIRED) ;
// Set the position of the camera in the end-effector frame
task.set_cVe(cVe);
// Set the Jacobian (expressed in the end-effector frame)
vpMatrix eJe;
robot.get_eJe(eJe);
task.set_eJe(eJe);
// we want to see a point on a point
for (i = 0; i < 4; i++)
task.addFeature(p[i], pd[i]);
// set the gain
task.setLambda(1);
std::cout << "\nDisplay task information: " << std::endl;
task.print();
unsigned int iter = 0;
// loop
while (iter++ < 200) {
std::cout << "---------------------------------------------" << iter << std::endl;
// Set the Jacobian (expressed in the end-effector frame)
// Since q is modified eJe is modified
robot.get_eJe(eJe);
task.set_eJe(eJe);
// get the robot position
robot.getPosition(wMc);
// Compute the position of the camera wrt the object frame
cMo = wMc.inverse() * wMo;
// Compute new point position
for (i = 0; i < 4; i++) {
point[i].track(cMo);
// retrieve x,y and Z of the vpPoint structure to compute the feature
vpFeatureBuilder::create(p[i], point[i]);
}
if (opt_display) {
vpServoDisplay::display(task, cam, Iint);
externalview.display(Iext, cextMo, cMo, cam, vpColor::green);
}
// Compute the control law
v = task.computeControlLaw();
if (iter == 1) {
std::cout << "Display task information: " << std::endl;
task.print();
}
// Send the camera velocity to the controller
// Save velocities applied to the robot in the log file
// v[0], v[1], v[2] correspond to camera translation velocities in m/s
// v[3], v[4], v[5] correspond to camera rotation velocities in rad/s
flog << v[0] << " " << v[1] << " " << v[2] << " " << v[3] << " " << v[4] << " " << v[5] << " ";
std::cout << "v: " << v.t() << std::endl;
std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
// Save feature error (s-s*) for the 4 feature points. For each feature
// point, we have 2 errors (along x and y axis). This error is
// expressed in meters in the camera frame
flog << (task.getError()).t() << " "; // s-s* for point 4
std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
// Save current visual feature s = (rho,theta)
for (i = 0; i < 4; i++) {
flog << p[i].get_rho() << " " << p[i].get_theta() << " ";
}
// Save current position of the points
for (i = 0; i < 4; i++) {
flog << point[i].get_x() << " " << point[i].get_y() << " ";
}
flog << std::endl;
if (iter == 1) {
ip.set_i(10);
ip.set_j(10);
std::cout << "\nClick in the internal camera view to continue..." << std::endl;
vpDisplay::displayText(Iint, ip, "A click to continue...", vpColor::red);
}
}
flog.close(); // Close the log file
// Display task information
task.print();
// Kill the task
task.kill();
std::cout << "Final robot position with respect to the object frame:\n";
cMo.print();
if (opt_display && opt_click_allowed) {
// suppressed for automate test
std::cout << "\n\nClick in the internal view to end..." << std::endl;
}
return 0;
} catch (vpException &e) {
std::cout << "Catch a ViSP exception: " << e << std::endl;
return 1;
}
}
#else
int main() { std::cout << "You do not have X11, GTK, GDI or OpenCV display functionalities..." << std::endl; }
#endif