ViSP  2.9.0
tutorial-simu-pioneer-pan.cpp

Example that shows how to simulate a visual servoing on a Pioneer mobile robot equipped with a camera able to move along the pan axis. The current visual features that are used are s = (x, log(Z/Z*)). The desired one are s* = (x*, 0), with:

The degrees of freedom that are controlled are (vx, wz), where wz is the rotational velocity and vx the translational velocity of the mobile platform at point M located at the middle between the two wheels.

The feature x allows to control wy, while log(Z/Z*) allows to control vz.

#include <iostream>
#include <visp/vpFeatureBuilder.h>
#include <visp/vpFeatureDepth.h>
#include <visp/vpFeaturePoint.h>
#include <visp/vpHomogeneousMatrix.h>
#include <visp/vpPlot.h>
#include <visp/vpServo.h>
#include <visp/vpSimulatorPioneerPan.h>
#include <visp/vpVelocityTwistMatrix.h>
int main()
{
try {
// Set the position the camera has to reach
cdMo[1][3] = 1.2; // t_y should be different from zero to be non singular
cdMo[2][3] = 0.5;
// Set the initial camera position
cMo[0][3] = 0.3;
cMo[1][3] = cdMo[1][3];
cMo[2][3] = 1.;
vpRotationMatrix cdRo(0, atan2(cMo[0][3], cMo[1][3]), 0);
cMo.insert(cdRo);
robot.setSamplingTime(0.04);
// Get robot position world frame
robot.getPosition(wMc);
// Compute the position of the object in the world frame
wMo = wMc * cMo;
// Define the target
vpPoint point;
point.setWorldCoordinates(0,0,0); // Coordinates in the object frame
point.track(cMo);
vpServo task;
task.setLambda(0.2);
cVe = robot.get_cVe();
task.set_cVe(cVe);
vpMatrix eJe;
robot.get_eJe(eJe);
task.set_eJe(eJe);
// Current and desired visual feature associated later to the x coordinate of the point
vpFeaturePoint s_x, s_xd;
// Create the current x visual feature
// Create the desired x* visual feature
s_xd.buildFrom(0, 0, cdMo[2][3]);
// Add the feature
task.addFeature(s_x, s_xd, vpFeaturePoint::selectX());
// Create the current and desired log(Z/Z*) visual feature
vpFeatureDepth s_Z, s_Zd;
// Initial depth of the target in front of the camera
double Z = point.get_Z();
// Desired depth Z* of the target.
double Zd = cdMo[2][3];
s_Z.buildFrom(s_x.get_x(), s_x.get_y(), Z, log(Z/Zd));
s_Zd.buildFrom(0, 0, Zd, 0); // log(Z/Z*) = 0 that's why the last parameter is 0
// Add the feature
task.addFeature(s_Z, s_Zd);
#ifdef VISP_HAVE_DISPLAY
// Create a window (800 by 500) at position (400, 10) with 3 graphics
vpPlot graph(3, 800, 500, 400, 10, "Curves...");
// Init the curve plotter
graph.initGraph(0,3);
graph.initGraph(1,2);
graph.initGraph(2,1);
graph.setTitle(0, "Velocities");
graph.setTitle(1, "Error s-s*");
graph.setTitle(2, "Depth");
graph.setLegend(0, 0, "vx");
graph.setLegend(0, 1, "wz");
graph.setLegend(0, 2, "qdot_pan");
graph.setLegend(1, 0, "x");
graph.setLegend(1, 1, "log(Z/Z*)");
graph.setLegend(2, 0, "Z");
#endif
int iter = 0;
for (; ;)
{
robot.getPosition(wMc) ;
cMo = wMc.inverse() * wMo;
point.track(cMo);
// Update the current x feature
// Update log(Z/Z*) feature. Since the depth Z change, we need to update the intection matrix
Z = point.get_Z() ;
s_Z.buildFrom(s_x.get_x(), s_x.get_y(), Z, log(Z/Zd));
robot.get_cVe(cVe);
task.set_cVe(cVe);
robot.get_eJe(eJe);
task.set_eJe(eJe);
// Compute the control law. Velocities are computed in the mobile robot reference frame
// Send the velocity to the robot
#ifdef VISP_HAVE_DISPLAY
graph.plot(0, iter, v); // plot velocities applied to the robot
graph.plot(1, iter, task.getError()); // plot error vector
graph.plot(2, 0, iter, Z); // plot the depth
#endif
iter ++;
if (task.getError().sumSquare() < 0.0001) {
std::cout << "Reached a small error. We stop the loop... " << std::endl;
break;
}
}
#ifdef VISP_HAVE_DISPLAY
const char *legend = "Click to quit...";
vpDisplay::displayCharString(graph.I, (int)graph.I.getHeight()-60, (int)graph.I.getWidth()-150, legend, vpColor::red);
#endif
// Kill the servo task
task.print();
task.kill();
}
catch(vpException e) {
std::cout << "Catch an exception: " << e << std::endl;
}
}