ViSP  2.9.0
servoSimuPoint2DhalfCamVelocity1.cpp

Simulation of a 2 1/2 D visual servoing (theta U):

/****************************************************************************
*
* $Id: servoSimuPoint2DhalfCamVelocity1.cpp 2457 2010-01-07 10:41:18Z nmelchio $
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2014 by INRIA. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact INRIA about acquiring a ViSP Professional
* Edition License.
*
* See http://www.irisa.fr/lagadic/visp/visp.html for more information.
*
* This software was developed at:
* INRIA Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
* http://www.irisa.fr/lagadic
*
* If you have questions regarding the use of this file, please contact
* INRIA at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* Description:
* Simulation of a 2 1/2 D visual servoing.
*
* Authors:
* Eric Marchand
* Fabien Spindler
*
*****************************************************************************/
#include <stdlib.h>
#include <stdio.h>
#include <visp/vpFeatureBuilder.h>
#include <visp/vpFeaturePoint.h>
#include <visp/vpFeatureThetaU.h>
#include <visp/vpGenericFeature.h>
#include <visp/vpHomogeneousMatrix.h>
#include <visp/vpMath.h>
#include <visp/vpParseArgv.h>
#include <visp/vpPoint.h>
#include <visp/vpServo.h>
#include <visp/vpSimulatorCamera.h>
// List of allowed command line options
#define GETOPTARGS "h"
void usage(const char *name, const char *badparam);
bool getOptions(int argc, const char **argv);
void usage(const char *name, const char *badparam)
{
fprintf(stdout, "\n\
Simulation of a 2 1/2 D visual servoing (x,y,Z,theta U):\n\
- eye-in-hand control law,\n\
- velocity computed in the camera frame,\n\
- without display.\n\
\n\
SYNOPSIS\n\
%s [-h]\n", name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
\n\
-h\n\
Print the help.\n");
if (badparam) {
fprintf(stderr, "ERROR: \n" );
fprintf(stderr, "\nBad parameter [%s]\n", badparam);
}
}
bool getOptions(int argc, const char **argv)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'h': usage(argv[0], NULL); return false; break;
default:
usage(argv[0], optarg_);
return false; break;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], NULL);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
int
main(int argc, const char ** argv)
{
try {
// Read the command line options
if (getOptions(argc, argv) == false) {
exit (-1);
}
vpServo task ;
std::cout << std::endl ;
std::cout << "-------------------------------------------------------" << std::endl ;
std::cout << " Test program for vpServo " <<std::endl ;
std::cout << " task : 2 1/2 D visual servoing " << std::endl ;
std::cout << "-------------------------------------------------------" << std::endl ;
std::cout << std::endl ;
// sets the initial camera location
vpPoseVector c_r_o(0.1,0.2,2,
) ;
vpHomogeneousMatrix cMo(c_r_o) ;
// Compute the position of the object in the world frame
robot.getPosition(wMc) ;
wMo = wMc * cMo;
// sets the desired camera location
vpPoseVector cd_r_o(0,0,1,
vpHomogeneousMatrix cdMo(cd_r_o) ;
// sets the point coordinates in the world frame
vpPoint point ;
point.setWorldCoordinates(0,0,0) ;
// computes the point coordinates in the camera frame and its 2D coordinates
point.track(cMo) ;
vpPoint pointd ;
pointd.setWorldCoordinates(0,0,0) ;
pointd.track(cdMo) ;
//------------------------------------------------------------------
// 1st feature (x,y)
// want to it at (0,0)
//------------------------------------------------------------------
// 2nd feature (Z)
// not necessary to project twice (reuse p)
vpFeatureBuilder::create(Z,point) ; //retrieve x,y and Z of the vpPoint structure
// want to see it one meter away (here again use pd)
vpFeatureBuilder::create(Zd,pointd) ; //retrieve x,y and Z of the vpPoint structure
//------------------------------------------------------------------
// 3rd feature ThetaU
// compute the rotation that the camera has to achieve
cdMc = cdMo*cMo.inverse() ;
tu.buildFrom(cdMc) ;
// sets the desired rotation (always zero !)
// since s is the rotation that the camera has to achieve
//------------------------------------------------------------------
// define the task
// - we want an eye-in-hand control law
// - robot is controlled in the camera frame
task.addFeature(p,pd) ;
task.addFeature(tu) ;
// set the gain
task.setLambda(1) ;
// Display task information
task.print() ;
unsigned int iter=0 ;
// loop
while(iter++<200)
{
std::cout << "---------------------------------------------" << iter <<std::endl ;
// get the robot position
robot.getPosition(wMc) ;
// Compute the position of the camera wrt the object frame
cMo = wMc.inverse() * wMo;
// update the feature
point.track(cMo) ;
cdMc = cdMo*cMo.inverse() ;
tu.buildFrom(cdMc) ;
// compute the control law
v = task.computeControlLaw() ;
// send the camera velocity to the controller ") ;
std::cout << "|| s - s* || = " << ( task.getError() ).sumSquare() <<std::endl ;
}
// Display task information
task.print() ;
task.kill();
std::cout << "Final camera location:\n " << cMo << std::endl ;
return 0;
}
catch(vpException e) {
std::cout << "Catch a ViSP exception: " << e << std::endl;
return 1;
}
}