ViSP  2.8.0
testPoseRansac.cpp

Compute the pose of a 3D object using the Ransac method.

/****************************************************************************
*
* $Id: testPoseRansac.cpp 4056 2013-01-05 13:04:42Z fspindle $
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2013 by INRIA. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact INRIA about acquiring a ViSP Professional
* Edition License.
*
* See http://www.irisa.fr/lagadic/visp/visp.html for more information.
*
* This software was developed at:
* INRIA Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
* http://www.irisa.fr/lagadic
*
* If you have questions regarding the use of this file, please contact
* INRIA at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* Description:
* Compute the pose of a 3D object using the Dementhon method. Assuming that
* the correspondance between 2D points and 3D points is not done, we use
* the RANSAC algorithm to achieve this task
*
* Authors:
* Aurelien Yol
*
*****************************************************************************/
#include <visp/vpPose.h>
#include <visp/vpPoint.h>
#include <visp/vpMath.h>
#include <visp/vpHomogeneousMatrix.h>
#include <stdlib.h>
#include <stdio.h>
#define L 0.1
int
main()
{
std::cout << "Pose computation with matched points" << std::endl;
int size = 8;
vpPoint *P = new vpPoint [size] ; // Point to be tracked
P[0].setWorldCoordinates(-L,-L, 0 ) ;
P[1].setWorldCoordinates(L,-L, 0 ) ;
P[2].setWorldCoordinates(L,L, 0 ) ;
P[3].setWorldCoordinates(-L,L, 0 ) ;
double L2 = L*3.0;
P[4].setWorldCoordinates(0,-L2, 0 ) ;
P[5].setWorldCoordinates(L2,0, 0 ) ;
P[6].setWorldCoordinates(0,L2, 0 ) ;
P[7].setWorldCoordinates(-L2,0, 0 ) ;
// P[4].setWorldCoordinates(-0,0, L ) ;
vpHomogeneousMatrix cMo_ref(0, 0.2, 1, 0, 0, 0) ;
for(int i=0 ; i < size ; i++)
{
P[i].project(cMo_ref) ;
P[i].print() ;
std::cout << std::endl;
}
//Introduce an error
double error = 0.01;
P[3].set_y(P[3].get_y() + 2*error);
P[6].set_x(P[6].get_x() + error);
vpPose pose;
for(int i=0 ; i < size ; i++)
pose.addPoint(P[i]);
unsigned int nbInlierToReachConsensus = (unsigned int)(75.0 * (double)size / 100.0);
double threshold = 0.001;
pose.setRansacNbInliersToReachConsensus(nbInlierToReachConsensus);
pose.setRansacThreshold(threshold);
//vpPose::ransac(lp,lP, 5, 1e-6, ninliers, lPi, cMo) ;
std::vector<vpPoint> inliers = pose.getRansacInliers();
std::cout << "Inliers: " << std::endl;
for (unsigned int i = 0; i < inliers.size() ; i++)
{
inliers[i].print() ;
std::cout << std::endl;
}
vpPoseVector pose_ref = vpPoseVector(cMo_ref);
vpPoseVector pose_est = vpPoseVector(cMo);
std::cout << std::endl;
std::cout << "reference cMo :\n" << pose_ref.t() << std::endl << std::endl;
std::cout << "estimated cMo :\n" << pose_est.t() << std::endl << std::endl;
int test_fail = 0;
for(unsigned int i=0; i<6; i++) {
if (std::fabs(pose_ref[i]-pose_est[i]) > 0.001)
test_fail = 1;
}
std::cout << "Pose is " << (test_fail ? "badly" : "well") << " estimated" << std::endl;
delete [] P;
return test_fail;
}