ViSP  2.10.0
servoAfma6Ellipse2DCamVelocity.cpp

Example of eye-in-hand control law. We control here a real robot, the Afma6 robot (cartesian robot, with 6 degrees of freedom). The velocity is computed in the camera frame. The used visual feature is a circle.

/****************************************************************************
*
* $Id: servoAfma6Ellipse2DCamVelocity.cpp 4574 2014-01-09 08:48:51Z fspindle $
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2014 by INRIA. All rights reserved.
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* ("GPL") version 2 as published by the Free Software Foundation.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact INRIA about acquiring a ViSP Professional
* Edition License.
*
* See http://www.irisa.fr/lagadic/visp/visp.html for more information.
*
* This software was developed at:
* INRIA Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
* http://www.irisa.fr/lagadic
*
* If you have questions regarding the use of this file, please contact
* INRIA at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
*
* Description:
* tests the control law
* eye-in-hand control
* velocity computed in the camera frame
*
* Authors:
* Eric Marchand
*
*****************************************************************************/
#include <visp/vpConfig.h>
#include <visp/vpDebug.h> // Debug trace
#include <stdlib.h>
#include <cmath> // std::fabs
#include <limits> // numeric_limits
#if (defined (VISP_HAVE_AFMA6) && defined (VISP_HAVE_DC1394_2))
#include <visp/vp1394TwoGrabber.h>
#include <visp/vpImage.h>
#include <visp/vpDisplay.h>
#include <visp/vpDisplayX.h>
#include <visp/vpDisplayOpenCV.h>
#include <visp/vpDisplayGTK.h>
#include <visp/vpMath.h>
#include <visp/vpHomogeneousMatrix.h>
#include <visp/vpFeatureEllipse.h>
#include <visp/vpServo.h>
#include <visp/vpFeatureBuilder.h>
#include <visp/vpRobotAfma6.h>
// Exception
#include <visp/vpException.h>
#include <visp/vpMatrixException.h>
#include <visp/vpServoDisplay.h>
#include <visp/vpDot.h>
int
main()
{
try
{
vpServo task ;
g.open(I) ;
g.acquire(I) ;
#ifdef VISP_HAVE_X11
vpDisplayX display(I,100,100,"Current image") ;
#elif defined(VISP_HAVE_OPENCV)
vpDisplayOpenCV display(I,100,100,"Current image") ;
#elif defined(VISP_HAVE_GTK)
vpDisplayGTK display(I,100,100,"Current image") ;
#endif
std::cout << std::endl ;
std::cout << "-------------------------------------------------------" << std::endl ;
std::cout << " Test program for vpServo " <<std::endl ;
std::cout << " Eye-in-hand task control, velocity computed in the camera frame" << std::endl ;
std::cout << " Simulation " << std::endl ;
std::cout << " task : servo a point " << std::endl ;
std::cout << "-------------------------------------------------------" << std::endl ;
std::cout << std::endl ;
vpDot dot ;
dot.setMaxDotSize(0.30) ; // Max dot size is 30 % of the image size
// dot.setGraphics(true) ;
dot.setComputeMoments(true) ;
std::cout << "Click on an ellipse..." << std::endl;
dot.initTracking(I) ;
vpImagePoint cog = dot.getCog();
dot.track(I) ;
vpRobotAfma6 robot ;
// Update camera parameters
robot.getCameraParameters (cam, I);
vpTRACE("sets the current position of the visual feature ") ;
vpFeatureBuilder::create(c, cam, dot) ;
std::cout << " Learning 0/1 " <<std::endl ;
int learning ;
std::cin >> learning ;
char name[FILENAME_MAX] ;
sprintf(name,"dat/ellipse.dat") ;
if (learning ==1)
{
// save the object position
vpTRACE("Save the location of the object in a file dat/ellipse.dat") ;
std::ofstream f(name) ;
f << c.get_s().t() ;
f.close() ;
exit(1) ;
}
vpTRACE("sets the desired position of the visual feature ") ;
std::ifstream f("dat/ellipse.dat") ;
double x,y,mu20,mu11,mu02 ;
f >> x ; f >> y ; f >> mu20 ; f >> mu11 ; f >> mu02 ;
f.close() ;
cd.buildFrom(x,y,mu20,mu11,mu02) ;
cd.setABC(0,0,10) ;
task.addFeature(c,cd) ;
task.setLambda(0.01) ;
unsigned int iter=0 ;
double lambda_av =0.01;
double alpha = 0.1 ; //1 ;
double beta =3 ; //3 ;
std::cout << "alpha 0.7" << std::endl;
std::cin >> alpha ;
std::cout << "beta 5" << std::endl;
std::cin >> beta ;
for ( ; ; )
{
std::cout << "---------------------------------------------" << iter++ <<std::endl ;
g.acquire(I) ;
dot.track(I) ;
// Get the dot cog
cog = dot.getCog();
// Compute the adaptative gain (speed up the convergence)
double gain ;
if (iter>2)
{
if (std::fabs(alpha) <= std::numeric_limits<double>::epsilon())
gain = lambda_av ;
else
{
gain = alpha * exp (-beta * ( task.getError() ).sumSquare() ) + lambda_av;
}
}
else gain = lambda_av ;
vpTRACE("%f %f", ( task.getError() ).sumSquare(), gain) ;
task.setLambda(gain) ;
v = task.computeControlLaw() ;
std::cout <<"rank " << task.getTaskRank() << std::endl ;
std::cout << v.t() ;
vpTRACE("\t\t || s - s* || = %f ", ( task.getError() ).sumSquare()) ;
}
vpTRACE("Display task information " ) ;
task.print() ;
task.kill();
}
catch (...)
{
vpERROR_TRACE(" Test failed") ;
return 0;
}
}
#else
int
main()
{
vpERROR_TRACE("You do not have an afma6 robot or a firewire framegrabber connected to your computer...");
}
#endif