
ViSP 2.6.3: Visual Servoing Platform

Image manipulation and processing

Lagadic project
http://www.irisa.fr/lagadic

September 28, 2012

François Chaumette
Eric Marchand

Nicolas Melchior
Antony Saunier
Fabien Spindler

Romain Tallonneau
Aurélien Yol

2

Contents

1 Image manipulation 5
1.1 The image structure . 5

1.1.1 Image representation . 5
1.1.2 Image types . 6
1.1.3 Allocating and releasing images . 7
1.1.4 Accessing pixel data . 8
1.1.5 Image conversion . 9
1.1.6 Importing an image from a buffer . 10
1.1.7 Importing an image from OpenCV . 11
1.1.8 Importing an image from YARP . 11

1.2 Reading and writing images . 11
1.2.1 Reading and writing portable anymap (PNM) images 12
1.2.2 Reading and writing PNG images . 13
1.2.3 Reading and writing JPEG images . 13

1.3 Graphical user interface . 14
1.3.1 Available GUI . 15
1.3.2 Example . 16

1.4 Image Acquisition . 18
1.4.1 Generic frame grabber interface . 19
1.4.2 Specific interface to video device . 19

2 Tracking in image sequences 33
2.1 Tracking a blob . 33

2.1.1 vpDot . 33
2.1.2 vpDot2 . 35

2.2 Moving-edge trackers . 36
2.2.1 General principle . 36
2.2.2 Implementation . 36
2.2.3 Moving edge configuration . 37

2.3 KeyPoint detection and matching . 41
2.3.1 SURF . 42
2.3.2 Ferns . 43

2.4 KLT . 45
2.4.1 Description . 45
2.4.2 Implementation . 45

4 CONTENTS

2.4.3 Example . 46

3 Networking 49
3.1 What is the Transmission Control Protocol . 49
3.2 Server vs Client . 49

3.2.1 Overview . 49
3.2.2 Server side . 50
3.2.3 Client side . 50

3.3 Messaging process . 51
3.3.1 Object mode . 51
3.3.2 Request mode . 53

Chapter 1

Image manipulation

1.1 The image structure

1.1.1 Image representation

An image is defined in ViSP as an instance of the container vpImage<Type> which contains a regular grid
of pixels (see figure 1.1), each pixel value being of type Type. The image size is height x width.

Figure 1.1: ViSP image representation. The pixel in white is at the coordinate (2,1).

Data structure Each image is built using two structures (a bitmap array which size is [width*height])
and an array of pointers row (which size is [height]). The ith element in the row array row[i] is a pointer
toward the ith line of the image (ie, bitmap + i*width, see figure 1.2). Such a structure allows a fast
access to each element of the image (see section 1.1.4). If i is the ith row and j the jth column the value of
this pixel is given by I[i][j] (that is equivalent to row[i][j]).

In ViSP, images are implemented through a template class. Therefore the type of each element of the
array is not a priori defined.

6 CHAPTER 1. IMAGE MANIPULATION

Figure 1.2: ViSP image data structure.

In ViSP the vpImage structure is implemented as follow to which is added members function (construc-
tor, destructor, operators ...):

1 template<class Type>
2 class vpImage
3 {
4 public:
5 Type *bitmap ; // points toward the bitmap
6

7 private:
8 Type **row ; // points the row pointer array
9 unsigned int npixels ; // number of pixels in the image

10 unsigned int width ; // number of columns
11 unsigned int height ; // number of rows
12 }

In order to use the vpImage class, it is necessary to include its header file.

1 #include <visp/vpImage.h>

1.1.2 Image types

1.1.2.1 Luminance images

Luminance (or greyscale) images are implemented in ViSP using the pixel data type unsigned charwhich
allows to represent 8 bits images (see figure 1.3). In that case each pixel can take an integer value in the
[0, 255] interval. Here we create such an empty image.

1 vpImage<unsigned char> I;

1.1. THE IMAGE STRUCTURE 7

Figure 1.3: Example of a luminance image: vpImage<unsigned char>.

1.1.2.2 RGB images

The term RGB (Red, Green, Blue) stands for a color representation commonly used in digital imaging. A
class intended to support the RGB pixel type is available in ViSP: the vpRGBa class. You could also define
your own pixel class and use it to instantiate a custom image type. The vpRGBa class is nothing more than
an array of four contiguous unsigned char elements respectively for the Red, Green, Blue component.
An additional element is provided to align data on 32 bits. In order to use the vpRGBa class, it is necessary
to include its header file.

1 #include <visp/vpRGBa.h>

Then a color image can be created (see figure 1.4):

1 vpImage<vpRGBa> Irgba;

1.1.2.3 YUV images

At this time, YUV images are not implemented in ViSP but it is possible to convert YUV image buffers to
implemented image formats (see section 1.1.6).

1.1.3 Allocating and releasing images

First, the header files respectively for the image and the RGB type class must be included.

1 #include <visp/vpImage.h>
2 #include <visp/vpRGBa.h>

Then we must decide with the data type used to represent the pixels.

1 vpImage<unsigned char> Ig; // declares an empty 8 bits greyscale image.
2 vpImage<vpRGBa> Irgba; // declares an empty 32 bits color image.

8 CHAPTER 1. IMAGE MANIPULATION

Figure 1.4: Example of a RGB color image: vpImage<vpRGBa>.

Memory allocation. We can then allocate the memory to store the image data. For that, we need to know
the image size. After this step, the two arrays bitmap and row of the vpImage class will be created,
initialized and linked together as presented figure 1.2.

1 I.init(height, width) ; // resizes I with the dimensions height x width.
2 I.resize(height, width) ; // resizes I with the dimensions height x width.

It is also possible to use directly the following constructors :

1 vpImage<unsigned char> Ig(height, width) ; // declares a height x width greyscale image.
2 vpImage<vpRGBa> Irgba(height,width) ; // declares a height x width color image.

To create directly an image with all the pixels set at a particular value, we use :

1 vpImage<unsigned char> I(height, width, value) ;
2 //or
3 vpImage<unsigned char> I;
4 I.init(height,width,value);
5 //or
6 vpImage<unsigned char> I;
7 I.init(height,width);
8 I = value ;

Memory releasing. Releasing the image is automatically done when the destructor of the vpImage in-
stance is called.

1.1.4 Accessing pixel data

As previously stated, the structure of the ViSP image class allows a fast access to each element of the image.

Reading access. To access a given pixel data at the coordinate (i,j) for reading, you can use one of the
following operators:

1.1. THE IMAGE STRUCTURE 9

1 vpImage<unsigned char> I;
2 unsigned char value;
3 unsigned int i,j;
4

5 value = I[i][j]; // where i,j are the row and column coordinates.
6 // or
7 value = I(i,j); // where i,j are the row and column coordinates.

Or directly deal with the bitmap image data:

1 vpImage<unsigned char> I;
2 unsigned char value;
3 unsigned int i,j;
4 unsigned int width = I.getWidth();
5

6 value = *(I.bitmap + i*width + j) // where i,j are the row and column coordinates.

Writing access. To access this pixel data for writing, you can use equivalent operations:

1 I[i][j] = value; // where i,j are the row and column coordinates.
2 // or
3 I(i,j,value); // where i,j are the row and column coordinates.
4 // or dealing with the bitmap pointer
5 *(I.bitmap + i*width + j) = value;

You can also get the value of a pixel at a non integer location with bilinear interpolation:

1 vpImage<unsigned char> I;
2 unsigned char value = I.getPixelBI(i,j); // where i,j are floats.
3 // The returned value is rounded to the nearest
4 // unsigned char (or to the nearest used type)
5 // or
6 double dvalue = I.get(i,j); // where i,j are double. The result is express as a double.
7 // This operator is available only for unary types,
8 // like unsigned char (not for vpRGBa for example).

Important remark. These operations set or return the pixel value at position (i, j) corresponding respec-
tively to the row and column position of the considered pixel. To provide high-performance access there is
no verification to ensure that 0 ≤ i < height and 0 ≤ j < width. Since the memory allocated in the
bitmap array is continuous, that means that if (i, j) is outside the image you will manipulate a pixel that is
not as expected. To highlight this remark, we provide hereafter an example where the considered pixel is
outside the image:

1 unsigned int width = 320;
2 unsigned int height = 240;
3 vpImage<unsigned char> I(height, width); // Create an 320x240 image
4 // Set pixel coordinates that is outside the image
5 unsigned int i = 100;
6 unsigned int j = 400;
7 unsigned char value;
8 value = I[i][j]; // Here we will get the pixel value at position (101, 80)

1.1.5 Image conversion

It can be useful to convert images from a format to another. The vpImageConvert class has been imple-
mented to satisfy this need. The first step is to include the header file of the vpImageConvert class.

10 CHAPTER 1. IMAGE MANIPULATION

1 #include <visp/vpImageConvert.h>

You can then use member functions to convert greyscale image into color images and vice-versa:

1 vpImage<unsigned char> Ig; // a greyscale image
2 vpImage<vpRGBa> Irgba; // a color image
3 ... // image manipulations
4 vpImageConvert::convert(Ig,Irgba); // convert a greyscale to a color image.
5 vpImageConvert::convert(Irgba,Ig); // convert a color to a greyscale image.
6

7 vpImage<unsigned char> *pR, *pG, *pB, *pA; // pointers to greyscale images.
8

9 vpImageConvert::split(Irgba,pR,pG,pB,pA); // split Irgba channels into 4 greyscale images.

1.1.6 Importing an image from a buffer

This section presents how to import data into the vpImage class. This is particularly useful for interfac-
ing with other libraries. For the following functionalities, we assume the buffers use contiguous block of
memory.

The first step is to include the header file of the vpImage class.

1 #include <visp/vpImage.h>

Then we create a greyscale image, and resize it with the good dimensions.

1 vpImage<unsigned char> Ig;
2 Ig.resize(height, width);

If the source buffer has the same format than the destination image, the most powerful method is to use
the standard C memcpy function.

1 unsigned char* src; // a buffer image of size height*width
2 memcpy(Ig.bitmap, src,height*width); // copy of the memory block in the vpImage instance

32 bits RGB color images can be copied in the same manner. In that case the place in memory is
4*height*width.

1 vpImage<vpRGBa> Irgba;
2 Irgba.resize(height, width);
3 unsigned char* src; // a buffer image of size 4*height*width
4 memcpy(Irgba.bitmap, src,4*height*width); // copy of the memory block in the vpImage instance

If the source buffer has not the same format than the destination image, we have to convert it in the good
format.

In that case, the first step is to include the header file for the vpImageConvert class.

1 #include <visp/vpImageConvert.h>

Then we replace the previous memcpy function by the conversion method corresponding to the need.
Here we convert a BGR color coded buffer into the buffer of a vpImage<vpRGBa>

1 vpImage<vpRGBa> Irgba;
2 Irgba.resize(height, width);
3

4 unsigned char* bgr; // a buffer an image of size height x width coded in format BGR
5

6 vpImageConvert::BGRToRGBa(bgr,Irgba.bitmap,width,height);

1.2. READING AND WRITING IMAGES 11

Here an other example for converting a YUV422 color coded buffer into the buffer of a
vpImage<unsigned char>

1 vpImage<unsigned char> Ig;
2 Ig.resize(height, width);
3

4 unsigned char* yuv; // a buffer an image of size height x width coded in format YUV422
5

6 vpImageConvert::YUV422ToGrey(yuv,Ig.bitmap,width*height);

Other formats are also available. You can find BGR, RGB, YUV444, YUV411, YUV422, YUV420,
YCbCr, YYCrCb conversion. More details can be found on vpImageConvert documentation class avail-
able on ViSP API documentation (see http://www.irisa.fr/lagadic/visp/publication.html).

1.1.7 Importing an image from OpenCV

It’s also possible to convert an image from or into the OpenCV IplImage format if you want to use both
ViSP and OpenCV libraries. This feature is only available if OpenCV was installed on your computer and
detected as a ViSP third party library.

1 #include <visp/vpImageConvert.h>
2 #include <highgui.h> // for OpenCV IplImage declaration
3

4 vpImage<unsigned char> Ig ; // a greyscale image
5 vpImage<vpRGBa> Irgba ; // a color image
6 IplImage* Icv = NULL ; // an OpenCV image
7

8 vpImageConvert::convert(Ig,Icv) ; // convert a greyscale image to a one channel IplImage.
9 vpImageConvert::convert(Irgba,Icv) ; // convert a color image to a 3 channels IplImage.

10 vpImageConvert::convert(Icv,Ig) ; // convert a IplImage to a greyscale image.
11 vpImageConvert::convert(Icv,Irgba) ; // convert a IplImage to a color image.

1.1.8 Importing an image from YARP

It’s also possible to convert an image from or into the YARP yarp::sig::ImageOf<> format if you want
to use both ViSP and YARP libraries. This feature is only available if YARP was installed on your computer
and detected as a ViSP third party library.

1 #include <visp/vpImageConvert.h>
2 #include <yarp/sig/Image.h> // for YARP image declaration
3

4 vpImage<unsigned char> Ig ; // a greyscale image
5 vpImage<vpRGBa> Irgba ; // a color image
6 yarp::sig::ImageOf< yarp::sig::PixelMono > Igy; // a YARP greyscale image
7 yarp::sig::ImageOf< yarp::sig::PixelRgba > Irgbay; // a YARP 4 channels color image
8 yarp::sig::ImageOf< yarp::sig::PixelRgb > Irgby; // a YARP 3 channels color image
9

10 vpImageConvert::convert(Ig,Igy) ; // ViSP greyscale image to a YARP one channel image
11 vpImageConvert::convert(Irgba,Irgbay) ; // ViSP color image to a YARP 4 channels image
12 vpImageConvert::convert(Irgba,Irgby) ; // ViSP color image to a YARP 3 channels image
13 vpImageConvert::convert(Igy,Ig) ; // YARP pixel mono image to a greyscale image
14 vpImageConvert::convert(Irgbay,Irgba) ; // YARP 4 channels image to a ViSP color image
15 vpImageConvert::convert(Irgby,Irgba) ; // YARP 3 channels image to a ViSP color image

1.2 Reading and writing images

ViSP allows to read (respectively write) greyscale and color images from (respectively on) the disk.

http://www.irisa.fr/lagadic/visp/publication.html

12 CHAPTER 1. IMAGE MANIPULATION

First, to read (respectively write) images from (respectively on) a file it is required to include the header
file of the vpImageIo class.

1 #include <visp/vpImageIo.h>

Then, the image type should be defined by specifying the type used to represent pixels.

1 vpImage<unsigned char> Ig; // Grey level images
2 // or
3 vpImage<vpRGBa> Irgba; // RGBa color images

The image type defines how the data will be represented once it is loaded into memory. This type
does not have to correspond exactly to the type stored in the file. The reader will make automatically the
conversion into a greyscaled image if you load a color image file in a vpImage<unsigned char> instance.

At that time in ViSP supported image file formats are: binary portable anymap formats (PNM) (portable
graymap PGM P5 and portable pixmap PPM P6), compressed PNG and JPEG formats.

You can finally call the reader functionality,

1 // We consider first a greylevel image container Ig
2 vpImageIo::read(Ig, "./myGreyscaleImage.pgm") ; // reads a PGM P5 file from the disk.
3 vpImageIo::read(Ig, "./myGreyscaleImage.ppm") ; // reads a PGM P6 file from the disk.
4 vpImageIo::read(Ig, "./myGreyscaleImage.png") ; // reads a PNG file from the disk.
5 vpImageIo::read(Ig, "./myGreyscaleImage.jpeg") ; // reads a JPEG file from the disk.
6 // We consider now a color image container Irgba
7 vpImageIo::read(Irgba, "./myColorImage.pgm") ; // reads a PPM P5 file from the disk.
8 vpImageIo::read(Irgba, "./myColorImage.ppm") ; // reads a PPM P6 file from the disk.
9 vpImageIo::read(Irgba, "./myColorImage.png") ; // reads a PNG file from the disk.

10 vpImageIo::read(Irgba, "./myColorImage.jpeg") ; // reads a JPEG file from the disk.

or the writer functionality.

1 vpImageIo::write(Ig, "./myNewGreyscaleImage.pgm") ; // writes a PGM P5 file on the disk.
2 vpImageIo::write(Ig, "./myNewGreyscaleImage.ppm") ; // writes a PGM P6 file on the disk.
3 vpImageIo::write(Ig, "./myNewGreyscaleImage.png") ; // writes a PNG file on the disk.
4 vpImageIo::write(Ig, "./myNewGreyscaleImage.jpeg") ; // writes a JPEG file on the disk.
5 vpImageIo::write(Irgba, "./myNewColorImage.pgm") ; // writes a PPM P5 file on the disk.
6 vpImageIo::write(Irgba, "./myNewGreyscaleImage.ppm") ; // writes a PGM P6 file on the disk.
7 vpImageIo::write(Irgba, "./myNewGreyscaleImage.png") ; // writes a PNG file on the disk.
8 vpImageIo::write(Irgba, "./myNewGreyscaleImage.jpeg") ; // writes a JPEG file on the disk.

read(...) and write(...) members function are general function which call one of the specific
reader or writer described in sections 1.2.1, 1.2.2 and 1.2.3 depending on the filename extension.

1.2.1 Reading and writing portable anymap (PNM) images

ViSP allows to read and write non compressed portable anymap image formats (PNM). This feature doesn’t
require any specific third party library.

Thus readPGM(...) reads the contents of a portable gray pixmap (PGM P5), allocate memory for the
corresponding grey level or color RGBa image, and set the vpImage with the content of the file.

Moreover, readPPM(...) reads the contents of a portable pixmap (PPM P6), allocate memory for the
corresponding grey level or color RGBa image, and set the vpImage with the content of the file.

1 // reads a PGM P5 file from the disk. No conversion is requested here.
2 vpImageIo::readPGM(Ig, "./myGreyscaleImage.pgm") ;
3 // reads a PGM P5 file from the disk and convert the grey level image to a RGBa image.
4 vpImageIo::readPGM(Irgba, "./myGreyscaleImage.pgm") ;
5 // reads a PPM P6 file from the disk and convert the image to a grey level image.
6 vpImageIo::readPPM(Ig, "./myColorImage.ppm") ;

1.2. READING AND WRITING IMAGES 13

7 // reads a PPM P6 file from the disk. No conversion is requested here.
8 vpImageIo::readPPM(Irgba, "./myColorImage.ppm") ;

writePGM(...) and writePPM(...) write respectively the content of a vpImage in a PGM P5 file
or in a PPM P6 file.

1 // writes a PGM P5 file on the disk.
2 vpImageIo::writePGM(Ig, "./myNewGreyscaleImage.pgm") ;
3 // writes a PGM P5 file on the disk. The RGBa color image is converted in a grey level image
4 // to match the file format
5 vpImageIo::writePPM(Irgba, "./myNewColorImage.pgm") ;
6 // writes a PPM P6 file on the disk. Here the grey level image Ig is converted to match
7 // the file format.
8 vpImageIo::writePGM(Ig, "./myNewGreyscaleImage.ppm") ;
9 // writes a PPM P6 file on the disk.

10 vpImageIo::writePPM(Irgba, "./myNewColorImage.ppm") ;

1.2.2 Reading and writing PNG images

ViSP allows to read and write compressed PNG images by using respectively readPNG(...) and
writePNG(...) functions. This feature requires that libpng is installed and detected during ViSP con-
figuration stage (see http://www.irisa.fr/lagadic/visp/libraries.html).

readPNG(...) reads the contents of a compressed PNG image, allocate memory for the corresponding
grey level or color RGBa image, and set the vpImage with the content of the file.

1 // reads a PNG file from the disk and convert the data in a grey level image
2 vpImageIo::readPNG(Ig, "./myGreyscaleImage.png") ;
3 // reads a PNG file from the disk and convert the data in a RGBa image.
4 vpImageIo::readPGM(Irgba, "./myGreyscaleImage.png") ;

writePNG(...) writes the content of a vpImage in a PNG file.

1 // writes a grey level image to a PNG file on the disk
2 vpImageIo::writePNG(Ig, "./myNewGreyscaleImage.png") ;
3 // writes a color RGBa image to a PNG file on the disk.
4 vpImageIo::writePNG(Irgba, "./myNewColorImage.png") ;

1.2.3 Reading and writing JPEG images

ViSP allows also to read and write compressed JPEG images by using respectively readJPEG(...) and
writeJPEG(...) functions. This feature requires that libjpeg is installed and detected during ViSP con-
figuration stage (see http://www.irisa.fr/lagadic/visp/libraries.html).

readJPEG(...) reads the contents of a compressed JPEG image, allocate memory for the correspond-
ing grey level or color RGBa image, and set the vpImage with the content of the file.

1 // reads a JPEG file from the disk and convert the data in a grey level image
2 vpImageIo::readJPEG(Ig, "./myGreyscaleImage.jpeg") ;
3 // reads a JPEG file from the disk and convert the data in a RGBa image.
4 vpImageIo::readPGM(Irgba, "./myGreyscaleImage.jpeg") ;

writeJPEG(...) writes the content of a vpImage in a JPEG file.

1 // writes a grey level image to a JPEG file on the disk
2 vpImageIo::writeJPEG(Ig, "./myNewGreyscaleImage.jpeg") ;
3 // writes a color RGBa image to a JPEG file on the disk.
4 vpImageIo::writeJPEG(Irgba, "./myNewColorImage.jpeg") ;

http://www.libpng.org/pub/png/libpng.html
http://www.irisa.fr/lagadic/visp/libraries.html
http://www.ijg.org/
http://www.irisa.fr/lagadic/visp/libraries.html

14 CHAPTER 1. IMAGE MANIPULATION

1.3 Graphical user interface

ViSP provides various classes to display images (GUI) depending on your system and installed third party
library using either the X11 system or higher level libraries such as GTK, Direct3D, Windows GDI (Graphic
Device Interface) or the OpenCV GUI (see http://www.irisa.fr/lagadic/visp/libraries.html). For that, a
generic class vpDisplay has been proposed from which a particular display class can be derived and some
vpDisplay pure virtual methods have to be defined within this new class.

At this date in ViSP the implemented display classes are:

• vpDisplayX using the X11 system (available on Linux and Mac OSX),

• vpDisplayGTK using the GTK multi-platform library,

• vpDisplayGDI using the Windows Graphics Device Interface (GDI) (available on Windows),

• vpDisplayD3D using the Direct3D (part of DirectX) API under Windows.

• vpDisplayOpenCV using the Intel multi-platform OpenCV library.

All these display interfaces are only available if the corresponding third party libraries are in-
stalled and detected during the CMake configuration process. To know which capabilities are avail-
able on your computer, you can check the header file include/vpConfig.h or the more generic
ViSP-third-party.txt text file available in the built tree. The defined macros allowing the
use of the previous classes are respectively VISP_HAVE_X11, VISP_HAVE_GTK, VISP_HAVE_GDI,
VISP_HAVE_D3D9 and VISP_HAVE_OPENCV.

Here, we will use the vpDisplayGTK interface to illustrate our explanations.

Construction and initialization. The display principle associates one display to one image. In each
display, we have an image buffer to make drawings in the memory. We render the image buffer on the
screen only when needed (for example at the end of a serie of drawings). The initialization step, links a
vpDisplayGTK instance to a vpImage instance, creates a window and allocates the image buffer.

1 #include <visp/vpImage.h>
2 #include <visp/vpDisplayGTK.h>
3

4 vpImage<unsigned char> I ; // declares a greyscale image
5 ... // image initialization
6 vpDisplayGTK display ;
7 display.init(I) ; // initializes the display with default parameters.
8 // or
9 display.init(I,winx,winy,"Window title") ; // initializes the display and creates a named

10 // window at the position (winx,winy) on the screen.

Drawing. Drawings are made in the image buffer thanks to static vpDisplay member functions. Here
are the major ones. See the vpDisplay class documentation on ViSP Doxygen documentation to get the
complete list of drawing functionalities.

1 vpDisplay::display(I) ; // draws the entire image I in the buffer of the display linked to I.
2 // All stuff drawn before are erased.
3

4 vpDisplay::displayPoint(I,...) ; // draws a point at a given pixel coordinates
5 vpDisplay::displayCross(I,...) ; // draws a cross
6 vpDisplay::displayLine(I,...) ; // draws a line between two points

http://www.irisa.fr/lagadic/visp/libraries.html

1.3. GRAPHICAL USER INTERFACE 15

7 vpDisplay::displayDotLine(I,...) ; // draws a dashed line between two points
8 vpDisplay::displayArrow(I,...) ; // draws an arrow between two points
9 vpDisplay::displayRectangle(I,...) ; // draws a rectangle

10 vpDisplay::displayCircle(I,...) ; // draws a circle
11 vpDisplay::displayCharString(I,...) ; // draws a text
12 ...

Rendering. After drawings in the buffer image, you have to render the buffer on the screen
1 vpDisplay::flush(I);

Without this line, you will see nothing on the screen.

Grabbing. You may have to retrieve what is drawn in the display image buffer (and generally displayed on
the screen). The following member function makes a copy of the display image buffer linked to a vpImage
into a vpImage<vpRGBa> instance Irgba.

1 vpDisplay::getImage(I,Irgba) ;

Mouse events handling. The vpDisplay class provides also functionalities to handle mouse events ap-
pearing in the opened display window.

1 #include <visp/vpMouseButton.h>
2 unsigned int i,j; // row and column position in the image.
3 vpMouseButton::vpMouseButtonType button;
4

5 vpDisplay::getClick(I); // waits for a click down in the display window associated to I.
6 vpDisplay::getClick(I,i,j); // waits for a click down, retrieve the pixel coordinates
7 vpDisplay::getClick(I,i,j,button); // waits for a click down, retrieve the pixel coordinates
8 // and the pressed mouse button.
9

10 vpDisplay::getClickUp(I); // waits for a click up in the display window associated to I.
11 vpDisplay::getClickUp(I,i,j); // waits for a click up, retrieve the pixel coordinates
12 vpDisplay::getClickUp(I,i,j,button); // waits for a click up, retrieve the pixel coordinates
13 // and the released mouse button.

All the previous functions have a blocking behaviour. Your program is stopped in these functions until
you click in the displayed window. To change this behavior to non-blocking, you can add a boolean set as
false after the last argument of these functions. In that case, the used function checks for a mouse event in
the event stack of the window and returns false if there is not such an event or true if there is. The caught
event is then removed from the stack.

Destruction. The display window is automatically closed when the destructor of your vpDisplay in-
stance is called. To close a display window without destroying your vpDisplay instance, you have to
call:

1 vpDisplay::close(I) ;

After that you will have to reinitialize the display to be able to use it.

1.3.1 Available GUI

All the display interfaces depend on third party libraries. Below you will find the specific
ones interfaced to provide a graphical user interface for images. More details are given on
http://www.irisa.fr/lagadic/visp/libraries.html.

http://www.irisa.fr/lagadic/visp/libraries.html

16 CHAPTER 1. IMAGE MANIPULATION

X11R6 The display interface for X11 window system has been interfaced in vpDisplayX class using the
X11 library (Xlib): the lowest level of programming interface to X11.

Include the corresponding header file to use it:

1 #include <visp/vpDisplayX.h>

GTK GTK can be used for the display under Linux, Windows, ... You need to install GTK if you want to
use vpDisplayGTK, a class to display ViSP images.

Include the corresponding header file to use it:

1 #include <visp/vpDisplayGTK.h>

Windows Graphics Device Interface (GDI) The Windows GDI allows to use vpDisplayGDI class un-
der Microsoft Windows Platforms. It is native on these platforms.

Include the corresponding header file to use it:

1 #include <visp/vpDisplayGDI.h>

Direct3D Direct3D can be used for the display under Windows. If installed, you are allowed to use
vpDisplayD3D class.

Include the corresponding header file to use it:

1 #include <visp/vpDisplayD3D.h>

OpenCV: Open Source Computer Vision Library ViSP is interfaced with the multi platform OpenCV
library. If installed, you are allowed to use vpDisplayOpenCV class.

Include the corresponding header file to use it:

1 #include <visp/vpDisplayOpenCV.h>

1.3.2 Example

All the displays are used in the same manner. Here is an example using the
vpDisplayGTK class. This example is also available in ViSP source tree in
example/manual/image-manipulation/manDisplay.cpp. It shows how to display an image
with some drawings in overlay. The resulting display content is given figure 1.5.

1 #include <visp/vpConfig.h>
2 #include <visp/vpImage.h>
3 #include <visp/vpImageIo.h>
4 #include <visp/vpColor.h>
5 #include <visp/vpDisplayGTK.h>
6 #include <visp/vpImagePoint.h>
7

8 int main()
9 {

10 // Create a grey level image
11 vpImage<vpRGBa> I ;
12

13 // Create image points for pixel coordinates
14 vpImagePoint ip, ip1, ip2;

1.3. GRAPHICAL USER INTERFACE 17

15

16 // Load a grey image from the disk. Klimt.ppm image is part of the ViSP
17 // image data set available from http://www.irisa.fr/lagadic/visp/download.html
18 std::string filename = "./Klimt.ppm";
19 vpImageIo::read(I, filename) ;
20

21 #ifdef VISP_HAVE_GTK
22 // Create a display using GTK
23 vpDisplayGTK display;
24

25 // For this grey level image, open a GTK display at position 100,100
26 // in the screen, and with title "GTK display"
27 display.init(I, 100, 100, "GTK display") ;
28

29 // Display the image
30 vpDisplay::display(I) ;
31

32 // Display in overlay a red cross at position 100,10 in the
33 // image. The lines are 20 pixels long
34 ip.set_i(200);
35 ip.set_j(200);
36 vpDisplay::displayCross(I, ip, 20, vpColor::red, 3) ;
37

38 // Display in overlay a horizontal red line
39 ip1.set_i(10);
40 ip1.set_j(0);
41 ip2.set_i(10);
42 ip2.set_j(I.getWidth());
43 vpDisplay::displayLine(I, ip1, ip2, vpColor::red, 3) ;
44

45 // Display in overlay a vertical green dot line
46 ip1.set_i(0);
47 ip1.set_j(20);
48 ip2.set_i(I.getWidth());
49 ip2.set_j(20);
50 vpDisplay::displayDotLine(I, ip1, ip2, vpColor::green, 3) ;
51

52 // Display in overlay a blue arrow
53 ip1.set_i(0);
54 ip1.set_j(0);
55 ip2.set_i(100);
56 ip2.set_j(100);
57 vpDisplay::displayArrow(I, ip1, ip2, vpColor::blue, 8, 4, 3) ;
58

59 // Display in overlay some circles. The position of the center is 200, 200
60 // the radius is increased by 20 pixels for each circle
61 for (unsigned i=0 ; i < 5 ; i++) {
62 ip.set_i(200);
63 ip.set_j(200);
64 vpDisplay::displayCircle(I, ip, 20*i, vpColor::white, false, 3) ;
65 }
66

67 // Display in overlay a rectangle.
68 // The position of the top left corner is 300, 200.
69 // The width is 200. The height is 100.
70 ip.set_i(280);
71 ip.set_j(150);
72 vpDisplay::displayRectangle(I, ip, 270, 30,vpColor::purple, false, 3) ;
73

74 // Display in overlay a yellow string
75 ip.set_i(300);
76 ip.set_j(160);
77 vpDisplay::displayCharString(I, ip,
78 "ViSP is a marvelous software",
79 vpColor::black) ;

18 CHAPTER 1. IMAGE MANIPULATION

80 //Flush the display : without this line nothing will appear on the screen
81 vpDisplay::flush(I);
82

83 // Create a color image
84 vpImage<vpRGBa> Ioverlay ;
85 // Updates the color image with the original loaded image and the overlay
86 vpDisplay::getImage(I, Ioverlay) ;
87

88 // Write the color image on the disk
89 filename = "./Klimt.overlay.ppm";
90 vpImageIo::write(Ioverlay, filename) ;
91

92 // If click is allowed, wait for a mouse click to close the display
93 std::cout << "\nA click to close the windows..." << std::endl;
94 // Wait for a blocking mouse click
95 vpDisplay::getClick(I) ;
96

97 // Close the display
98 vpDisplay::close(I);
99 #endif

100

101 return 0;
102 }

Figure 1.5: Displayed image by the example presented in section 1.3.2

1.4 Image Acquisition

Frame grabber interfaces allow to deal with video devices such as cameras.

1.4. IMAGE ACQUISITION 19

1.4.1 Generic frame grabber interface

A generic vpFrameGrabber class has been proposed from which a particular framegrabber class can be
derived and some vpFrameGrabber pure virtual methods have to be defined within this new class (mainly
initialization, acquisition, closing methods). Such interface with ViSP is very simple to add since such
methods should already exist on the user particular system. In the current version of ViSP, some classical
framegrabbers are already considered (IEEE 1394, Video4Linux2, DirectShow,...).

The prototype of the vpFrameGrabber can be defined as follow (to which must be added constructors
and destructors, copy operators, etc.):

1 class vpFrameGrabber {
2 public :
3 bool init ; // bit 1 if the frame grabber has been initialized
4

5 protected:
6 unsigned int height ; // number of rows in the image
7 unsigned int width ; // number of columns in the image
8

9 public:
10 // return the number of rows in the image
11 inline unsigned int getHeight() { return height ; }
12 //! return the number of columns in the image
13 inline unsigned int getWidth() { return width ; }
14

15 // initialize the framegrabber
16 virtual void open(vpImage<unsigned char> &I) =0 ;
17 virtual void open(vpImage<vpRGBa> &I) =0 ;
18

19 // acquire a frame into a vpImage
20 virtual void acquire(vpImage<unsigned char> &I) =0 ;
21 virtual void acquire(vpImage<vpRGBa> &I) =0 ;
22

23 // close the framegrabber
24 virtual void close() =0 ;
25 } ;

1.4.2 Specific interface to video device

At this date in ViSP the implemented interface classes are:

• vp1394TwoGrabber using the libdc1394-2.x third party library (available on Linux, Mac OSX and
Windows but never tested under Windows),

• vpV4l2Grabber using the third party Video4Linux2 library (available on Linux),

• vpDirectShowGrabber using the third party Microsoft DirectShow library (available on Windows),

• vpOpenCVGrabber using the third party OpenCV library (available on Windows, Linux and Mac
OSX),

• vpDiskGrabber that does’t require a specific third party library.

Depending on third party libraries, to know which capabilities are available on your computer, you
can check the built ViSP-third-party.txt file that resume all the supported third party libraries that
are interfaced with your built. The defined macros allowing the use of the previous classes are respec-
tively VISP_HAVE_1394_2, VISP_HAVE_V4L2, VISP_HAVE_DIRECTSHOW and VISP_HAVE_OPENCV.
vpDiskGrabber is not third party dependant.

20 CHAPTER 1. IMAGE MANIPULATION

1.4.2.1 Interface to firewire camera: libdc1394-2

ViSP uses the libdc1394 library to implement an IEEE 1394 interface. libdc1394-2 is a library that is
intended to provide a high level programming interface for application developers who wish to control
IEEE 1394 based cameras that conform to the 1394-based Digital Camera Specification. If libdc1394-2.x is
installed you can grab images from firewire cameras with vp1394TwoGrabber class. This grabber allows
single or multi camera acquisition.

This class was tested with Marlin F033C, Marlin F131B and Point Grey Dragonfly 2 cameras.

Here a minimal example of capture from the first camera found on the bus with the current camera
settings:

1 #include <visp/vpImage.h>
2 #include <visp/vp1394TwoGrabber.h>
3

4 int main(){
5 vpImage<unsigned char> I;
6 vp1394TwoGrabber g;
7 while(1)
8 g.acquire(I);
9 }

However this grabber allows to modify the camera settings.

Declaration First we should include the vp1394TwoGrabber header file, declare a framegrabber and the
image in which we will put the acquired data:

1 #include <visp/vpImage.h>
2 #include <visp/vp1394TwoGrabber.h>
3

4 vp1394TwoGrabber g;
5 vpImage<unsigned char> I;

Here we declare a monochrome image but it is also possible to use color image container. Then we can
set the camera settings.

Camera selection To communicate with a camera, we have to set this one as the active camera. The
camera selection is done using the setCamera(...) function:

1 g.setCamera(camera);

where camera is the index of the camera you want to deal with. Its value must be comprised between
0 (the first camera) and the number of cameras found on the bus. If two cameras are connected on the bus,
setting camera to 1 allows to communicate with the second one.

To know the number of cameras on the bus, use the member function getNumCameras(...)

1 unsigned int num_cameras;
2 g.getNumCameras(num_cameras);

Camera settings manipulation Two steps are necessary to set specific camera settings. First you have to
set the camera video mode, and then the framerate.

1.4. IMAGE ACQUISITION 21

Video mode setting The camera video mode gives the size of the acquired images and their
color coding. It can be set by setVideoMode(...). The current camera video mode is given by
getVideoMode(...). The allowed values are given in vp1394TwoGrabber header file:

1 /*!
2 Enumeration of video modes. See libdc1394 2.x header file dc1394/control.h
3 */
4 typedef enum {
5 vpVIDEO_MODE_160x120_YUV444 = DC1394_VIDEO_MODE_160x120_YUV444,
6 vpVIDEO_MODE_320x240_YUV422 = DC1394_VIDEO_MODE_320x240_YUV422,
7 vpVIDEO_MODE_640x480_YUV411 = DC1394_VIDEO_MODE_640x480_YUV411,
8 vpVIDEO_MODE_640x480_YUV422 = DC1394_VIDEO_MODE_640x480_YUV422,
9 vpVIDEO_MODE_640x480_RGB8 = DC1394_VIDEO_MODE_640x480_RGB8,

10 vpVIDEO_MODE_640x480_MONO8 = DC1394_VIDEO_MODE_640x480_MONO8,
11 vpVIDEO_MODE_640x480_MONO16 = DC1394_VIDEO_MODE_640x480_MONO16,
12 vpVIDEO_MODE_800x600_YUV422 = DC1394_VIDEO_MODE_800x600_YUV422,
13 vpVIDEO_MODE_800x600_RGB8 = DC1394_VIDEO_MODE_800x600_RGB8,
14 vpVIDEO_MODE_800x600_MONO8 = DC1394_VIDEO_MODE_800x600_MONO8,
15 vpVIDEO_MODE_1024x768_YUV422 = DC1394_VIDEO_MODE_1024x768_YUV422,
16 vpVIDEO_MODE_1024x768_RGB8 = DC1394_VIDEO_MODE_1024x768_RGB8,
17 vpVIDEO_MODE_1024x768_MONO8 = DC1394_VIDEO_MODE_1024x768_MONO8,
18 vpVIDEO_MODE_800x600_MONO16 = DC1394_VIDEO_MODE_800x600_MONO16,
19 vpVIDEO_MODE_1024x768_MONO16 = DC1394_VIDEO_MODE_1024x768_MONO16,
20 vpVIDEO_MODE_1280x960_YUV422 = DC1394_VIDEO_MODE_1280x960_YUV422,
21 vpVIDEO_MODE_1280x960_RGB8 = DC1394_VIDEO_MODE_1280x960_RGB8,
22 vpVIDEO_MODE_1280x960_MONO8 = DC1394_VIDEO_MODE_1280x960_MONO8,
23 vpVIDEO_MODE_1600x1200_YUV422 = DC1394_VIDEO_MODE_1600x1200_YUV422,
24 vpVIDEO_MODE_1600x1200_RGB8 = DC1394_VIDEO_MODE_1600x1200_RGB8,
25 vpVIDEO_MODE_1600x1200_MONO8 = DC1394_VIDEO_MODE_1600x1200_MONO8,
26 vpVIDEO_MODE_1280x960_MONO16 = DC1394_VIDEO_MODE_1280x960_MONO16,
27 vpVIDEO_MODE_1600x1200_MONO16 = DC1394_VIDEO_MODE_1600x1200_MONO16,
28 vpVIDEO_MODE_EXIF = DC1394_VIDEO_MODE_EXIF,
29 vpVIDEO_MODE_FORMAT7_0 = DC1394_VIDEO_MODE_FORMAT7_0,
30 vpVIDEO_MODE_FORMAT7_1 = DC1394_VIDEO_MODE_FORMAT7_1,
31 vpVIDEO_MODE_FORMAT7_2 = DC1394_VIDEO_MODE_FORMAT7_2,
32 vpVIDEO_MODE_FORMAT7_3 = DC1394_VIDEO_MODE_FORMAT7_3,
33 vpVIDEO_MODE_FORMAT7_4 = DC1394_VIDEO_MODE_FORMAT7_4,
34 vpVIDEO_MODE_FORMAT7_5 = DC1394_VIDEO_MODE_FORMAT7_5,
35 vpVIDEO_MODE_FORMAT7_6 = DC1394_VIDEO_MODE_FORMAT7_6,
36 vpVIDEO_MODE_FORMAT7_7 = DC1394_VIDEO_MODE_FORMAT7_7
37 } vp1394TwoVideoModeType;

All these video modes are not supported by your camera. The list of your camera supported video modes
is given by getVideoModeSupported(...).

The video mode is expressed as an int. To be more explicit, videoMode2string(...) converts the
video mode identifier into a string containing the description of the video mode.

1 int videoMode;
2 g.getVideoMode(videoMode); // gets the current video mode identifier
3 std::cout << "The current videoMode is : " << g.videoMode2string(videoMode) << std::endl;

In the case of FORMAT7 video modes, the color coding type must be placed separately. It can be set
by setColorCoding(...). The current camera color coding type is given by getColorCoding(...).
The allowed values are given in vp1394TwoGrabber header file:

1 /*!
2 Enumeration of color codings. See libdc1394 2.x header file dc1394/control.h
3 */
4 typedef enum {
5 vpCOLOR_CODING_MONO8 = DC1394_COLOR_CODING_MONO8,

22 CHAPTER 1. IMAGE MANIPULATION

6 vpCOLOR_CODING_YUV411 = DC1394_COLOR_CODING_YUV411,
7 vpCOLOR_CODING_YUV422 = DC1394_COLOR_CODING_YUV422,
8 vpCOLOR_CODING_YUV444 = DC1394_COLOR_CODING_YUV444,
9 vpCOLOR_CODING_RGB8 = DC1394_COLOR_CODING_RGB8,

10 vpCOLOR_CODING_MONO16 = DC1394_COLOR_CODING_MONO16,
11 vpCOLOR_CODING_RGB16 = DC1394_COLOR_CODING_RGB16,
12 vpCOLOR_CODING_MONO16S = DC1394_COLOR_CODING_MONO16S,
13 vpCOLOR_CODING_RGB16S = DC1394_COLOR_CODING_RGB16S,
14 vpCOLOR_CODING_RAW8 = DC1394_COLOR_CODING_RAW8,
15 vpCOLOR_CODING_RAW16 = DC1394_COLOR_CODING_RAW16
16 } vp1394TwoColorCodingType;

All these color coding type are not supported by your camera. The list of your camera supported color
coding types is given by getColorCodingSupported(...).

The color coding type is expressed as an int. To be more explicit, colorCoding2string(...)
converts the color coding type identifier into a string containing the description of the color coding type.

1 int colorCoding;
2 g.getColorCoding(colorCoding); // gets the current color coding identifier
3 std::cout << "Current color coding : " << g.colorCoding2string(colorCoding) << std::endl;

Setting color coding for non FORMAT7 video modes will be without effect.

Framerate setting The camera framerate can be set by setFramerate(...). The current camera
framerate is given by getFramerate(...). The allowed values are given in vp1394TwoGrabber header
file:

1 /*!
2 Enumeration of framerates. See libdc1394 2.x header file dc1394/control.h
3 */
4 typedef enum {
5 vpFRAMERATE_1_875 = DC1394_FRAMERATE_1_875,
6 vpFRAMERATE_3_75 = DC1394_FRAMERATE_3_75,
7 vpFRAMERATE_7_5 = DC1394_FRAMERATE_7_5,
8 vpFRAMERATE_15 = DC1394_FRAMERATE_15,
9 vpFRAMERATE_30 = DC1394_FRAMERATE_30,

10 vpFRAMERATE_60 = DC1394_FRAMERATE_60,
11 vpFRAMERATE_120 = DC1394_FRAMERATE_120,
12 vpFRAMERATE_240 = DC1394_FRAMERATE_240
13 } vp1394TwoFramerateType;

All these framerates are not supported by your camera. The list of your camera supported framerates is
given by getFramerateSupported(...).

The framerate is expressed as an int. To be more explicit, framerate2string(...) converts the
framerate identifier into a string containing the description of the framerate.

1 int framerate;
2 g.getFramerate(framerate); // gets the current framerate identifier
3 std::cout << "The current framerate is : " << g.framerate2string(framerate) << std::endl;

Ring buffer size setting The ring buffer is organized as a contiguous block of memory-mapped frame
buffers waiting to be filled and internally set to a queued state. Filling of the first buffer can start as soon
as you create a vp1394TwoGrabber instance. Each buffer is set to the ready state as soon as it is filled.
Frame transmission continues until you close the grabber by calling close() method. If all of the buffers
are filled during the capture then the capture stops (that means that you loose recent frames) until you close
the grabber or make space by calling acquire() capture functions. In ViSP the default ring buffer size is
set to 4. Depending on your computer, it can be useful to change this value:

1.4. IMAGE ACQUISITION 23

1 g.setRingBufferSize(2);

It is also possible to know the current ring buffer size:

1 unsigned int ringBufferSize;
2 ringBufferSize = g.getRingBufferSize();

Acquisition The acquisition is done using the acquire(...) function .

1 while(1)
2 g.acquire(I);

If an image is available in the framebuffer, it returns this image in I. In the other case, it waits for a new
one.

Closing The framegrabber closing useful to stop the image capture is done either by the
vp1394TwoGrabber destructor, or by an explicit call to the close() function.

Here an example of multi camera capture. This example is also available in the ViSP source tree in
example/manual/image-manipulation/manGrab1394-2.cpp. A more complete example can also
be found in example/framegrabber/grab1394Two.cpp in the ViSP source tree.

1 #include <visp/vpImage.h>
2 #include <visp/vp1394TwoGrabber.h>
3

4 int main(){
5 unsigned int ncameras; // Number of cameras on the bus
6 vp1394TwoGrabber g;
7 g.getNumCameras(ncameras);
8 vpImage<unsigned char> *I = new vpImage<unsigned char> [ncameras];
9

10 // If the first camera supports vpVIDEO_MODE_640x480_YUV422 video mode
11 g.setCamera(0);
12 g.setVideoMode(vp1394TwoGrabber::vpVIDEO_MODE_640x480_YUV422);
13

14 // If all cameras support 30 fps acquisition
15 for (unsigned int camera=0; camera < ncameras; camera ++) {
16 g.setCamera(camera);
17 g.setFramerate(vp1394Two::vpFRAMERATE_30);
18 }
19

20 while(1) {
21 for (unsigned int camera=0; camera < ncameras; camera ++) {
22 // Acquire successively images from the different cameras
23 g.setCamera(camera);
24 g.acquire(I[camera]);
25 }
26 }
27 delete [] I;
28 }

1.4.2.2 Interface to firewire camera: apple quicktime

At this date, the apple quicktime interface is not implemented.

24 CHAPTER 1. IMAGE MANIPULATION

1.4.2.3 V4l2 interface : Video For Linux 2

Under Linux if V4l2 is installed, with vpV4l2Grabber class you can grab images from USB cameras or
also from analogic cameras connected to a PCI TV board. This grabber allows single camera acquisition.

This class was tested with a Pinnacle PCTV Studio/Rave board but also with the following webcams
(Logitech QuickCam Vision Pro 9000, Logitech QuickCam Orbit AF, Dell latitude E6400 internal webcam).

Here a minimal example of capture from the first video input port with the default camera settings:

1 #include <visp/vpImage.h>
2 #include <visp/vpV4l2Grabber.h>
3

4 int main(){
5 vpImage<unsigned char> I;
6 vpV4l2Grabber g;
7 g.open(I);
8 while(1)
9 g.acquire(I);

10 }

However this grabber allows to modify the camera settings.

Declaration First we should include the vpV4l2Grabber header file, declare a framegrabber and the
image in which we will put the acquired data:

1 #include <visp/vpImage.h>
2 #include <visp/vpV4l2Grabber.h>
3

4 vpV4l2Grabber g;
5 vpImage<unsigned char> I;

Here we declare a monochrome image but it is also possible to use color image container. Then we can
set the camera settings.

Camera settings manipulation

Input board and camera selection If several acquisition boards are installed or if the board is not
mounted at /dev/video0, we have to set the device name thanks to the setDevice(...) function.

1 g.setDevice(device);

where device is the name of the mounted point of the board we want to deal with.
To communicate with a camera on that board, we have to set this one as the active camera. The camera

selection is done using the setInput(...) function:

1 g.setInput(camera);

where camera is the index of the video input port on the acquisition board we want to deal with. Its
value must be comprised between 0 (the first port, the default value) and the number of ports on the board.
If two ports are available on the board, setting camera to 1 allows to communicate with the second one.

1.4. IMAGE ACQUISITION 25

Image resolution setting The camera image resolution can be set by setScale(...).
This function sets the decimation factor applied to full resolution images. The scale should be between

1 and 16. Setting the scale factor to 2 will produce half size images with reference to the full resolution
images.

1 int scale;
2 g.setScale(scale); // set the decimation factor
3 std::cout << "The current framerate is : " << g.framerate2string(framerate) << std::endl;

setWidth(...) and setHeight(...) can also be used to set this factor.

Framerate setting The camera framerate can be set by setFramerate(...). The current camera
framerate is given by getFramerate(...). The allowed values are given in vpV4l2Grabber header
file:

1 /*!
2 Frame rate type for capture.
3 */
4 typedef enum
5 {
6 framerate_50fps, //!< 50 frames per second
7 framerate_25fps //!< 25 frames per second
8 } vpV4l2FramerateType;

Ring buffer setting setNBuffers(...) Set the number of buffers required for streaming data.
For non real-time applications the number of buffers should be set to 1. For real-time applications to

reach 25 fps or 50 fps a good compromise is to set the number of buffers to 3.

Initialization When all the settings have been placed, the camera can be initialized. The image in which
the captured data will be placed must also be resized. This operation is achieved thanks to the open(...)
function:

1 g.open(I);

Now, the framegrabber is ready to acquire frames.

Acquisition The acquisition is done using the acquire(...) function .

1 while(1)
2 g.acquire(I);

If an image is available in the framebuffer, it returns this image in I. In the other case, it waits for a new
one.

Closing The framegrabber closing useful to stop the image capture is done either by the vpV4l2Grabber
destructor, or by an explicit call to the close() function.

Here an example of single camera capture. This example is also available in
example/manual/image-manipulation/manGrabV4l2.cpp in the ViSP source tree. A more com-
plete example can also be found in the ViSP source tree in example/framegrabber/manGrabV4l2.cpp.

26 CHAPTER 1. IMAGE MANIPULATION

1 #include <visp/vpImage.h>
2 #include <visp/vpV4l2Grabber.h>
3 int main(){
4 vpImage<unsigned char> I; // Grey level image
5

6 vpV4l2Grabber g;
7 g.setInput(2); // Input 2 on the board
8 g.setWidth(768); // Acquired images are 768 width
9 g.setHeight(576); // Acquired images are 576 height

10 g.setNBuffers(3); // 3 ring buffers to ensure real-time acquisition
11 g.open(I); // Open the grabber
12 while(1)
13 g.acquire(I); // Acquire a 768x576 grey image
14 }

1.4.2.4 Windows interface : DirectShow

ViSP uses the DirectShow library to implement a Windows interface. If DirectShow is installed and detected
you can grab images from cameras which support this interface with vpDirectShowGrabber class. This
grabber allows only single camera acquisition. However it is possible to deal with several cameras using
one grabber per camera.

Here a minimal example of capture from the first camera found on the bus with the current camera
settings:

1 #include <visp/vpImage.h>
2 #include <visp/vpDirectShowGrabber.h>
3

4 int main(){
5 vpImage<unsigned char> I;
6 vpDirectShowGrabber g;
7 while(1)
8 g.acquire(I);
9 }

However this grabber allows to modify the camera settings.

Declaration and Initialisation First we should include the vpDirectShowGrabber header file, declare
a framegrabber and the image in which we will put the acquired data:

1 #include <visp/vpImage.h>
2 #include <visp/vpDirectShowGrabber.h>
3

4 vpDirectShowGrabber g;
5 vpImage<unsigned char> I;

Here we declare a monochrome image but it is also possible to use color image container.

Initialisation We have then to initialize the grabber.

1 g.open();

Then we can set the camera settings.

1.4. IMAGE ACQUISITION 27

Camera selection To communicate with a camera, we have to set this one as the active camera. The
camera selection is done using the setDevice(...) function:

1 g.setDevice(camera);

where camera is the index of the camera you want to deal with. Its value must be comprised between
0 (the first camera) and the number of cameras found on the bus. If two cameras are connected on the bus,
setting camera to 1 allows to communicate with the second one.

To know the number of cameras on the bus, use the member function getDeviceNumber()

1 unsigned int num_cameras;
2 g.getDeviceNumber(num_cameras);

To have more information about cameras on the bus, use the member function displayDevices(). It
displays the list of devices on the standard output (camera index, name, ...).

Camera settings manipulation Two steps are necessary to set specific camera settings. First you have to
set the camera video mode, and then the framerate.

Video mode setting The camera video mode gives the size of the acquired images and their color cod-
ing. It can be set by setMediaType(...). The current camera video mode is given by getMediaType().

The list of your camera supported video modes is displayed on the standard output by
getStreamCapabilities().

The member function setImageSize(...) can also be used to change the size of the acquired images
if a corresponding video mode is available with the current color coding.

Framerate setting The camera framerate can be set by setFramerate(...).
According the DirectShow documentation, the effective framerate applied is the nearest framerate sup-

ported by your camera.
The current camera framerate is given by getFramerate(...).

Acquisition The acquisition is done using the acquire(...) function .

1 while(1)
2 g.acquire(I);

If an image is available in the framebuffer, it returns this image in I. In the other case, it waits for a new
one.

Here an example of single camera capture. This example is also available in the ViSP source
tree in example/manual/image-manipulation/manGrabDirectShow.cpp. More com-
plete examples can also be found in example/framegrabber/grabDirectShow.cpp and
example/framegrabber/grabDirectShowMulti.cpp in the ViSP source tree.

1 #include <visp/vpImage.h>
2 #include <visp/vpDirectShowGrabber.h>
3

4 int main(){
5 vpImage<unsigned char> I; // Grey level image
6

7 vpDirectShowGrabber g; // Create the grabber
8 if(g.getDeviceNumber() == 0) //test if a camera is connected

28 CHAPTER 1. IMAGE MANIPULATION

9 {
10 g.close();
11 exit(0);
12 }
13

14 g.open(); // Initialize the grabber
15

16 g.setImageSize(640,480); // If the camera supports 640x480 image size
17 g.setFramerate(30); // If the camera supports 30fps framerate
18

19 while(1)
20 g.acquire(I); // Acquire an image
21 }

1.4.2.5 Disk interface

The disk interface has been implemented as a virtual video device to "grab" images from the disk thanks to
the vpDiskGrabber class. This class is an interface to the vpImageIo class. See section 1.2 to have more
information about the supported image formats.

Here an example of capture from the directory /tmp. We want to acquire 100 images from the first named
image0001.pgm by steps of 3.

1 #include <visp/vpImage.h>
2 #include <visp/vpDiskGrabber.h>
3

4 int main(){
5 vpImage<unsigned char> I; // Grey level image
6

7 // Declare a framegrabber able to read a sequence of successive
8 // images from the disk
9 vpDiskGrabber g;

10

11 // Set the path to the directory containing the sequence
12 g.setDirectory("/tmp");
13 // Set the image base name. The directory and the base name constitute
14 // the constant part of the full filename
15 g.setBaseName("image");
16 // Set the step between two images of the sequence
17 g.setStep(3);
18 // Set the number of digits to build the image number
19 g.setNumberOfZero(4);
20 // Set the first frame number of the sequence
21 g.setImageNumber(1);
22 // Set the file extension of the images of the sequence
23 g.setExtension("pgm");
24

25 // Open the framegrabber by loading the first image of the sequence
26 g.open(I) ;
27

28 // this is the loop over the image sequence
29 for(int cpt = 0; cpt < 100; cpt++)
30 {
31 // read the image and then increment the image counter so that the next
32 // call to acquire(I) will get the next image
33 g.acquire(I) ;
34 }
35 }

1.4. IMAGE ACQUISITION 29

1.4.2.6 Multi-platform interface : OpenCV

ViSP can also use the OpenCV third party library to implement a multiplatform interface. If
OpenCV is installed and detected you can grab images from cameras which support this interface with
vpOpenCVGrabber class. This grabber allows only single camera acquisition. However it is possible to
deal with several cameras using one grabber by camera.

Here a minimal example of capture from the first camera found on the bus with the current camera
settings:

1 #include <visp/vpImage.h>
2 #include <visp/vpOpenCVGrabber.h>
3

4 int main(){
5 vpImage<unsigned char> I;
6 vpOpenCVGrabber g;
7 while(1)
8 g.acquire(I);
9 }

However this grabber allows to modify few camera settings.

Declaration and Initialisation First we should include the vpOpenCVGrabber header file, declare a
framegrabber and the image in which we will put the acquired data:

1 #include <visp/vpImage.h>
2 #include <visp/vpOpenCVGrabber.h>
3

4 vpOpenCVGrabber g;
5 vpImage<unsigned char> I;

Here we declare a monochrome image but it is also possible to use a color image container.

Device type selection We have then to choose the type of device we want to use.

1 g.setDeviceType(deviceType);

The variable deviceType is an int that can take different values which are :

• CV_CAP_ANY : Look for any kind of device type. Stop the research as soon as a camera is found.

• CV_CAP_MIL : Usable if the MIL third party library is installed on your computer and detected by
OpenCV.

• CV_CAP_VFW : Usable if the framework Video for Windows is detected by OpenCV

• CV_CAP_V4L : Usable if Video for Linux is available.

• CV_CAP_V4L2 : Usable if Video for Linux Two is available.

• CV_CAP_FIREWIRE : Usable if a third party library dedicated to firewire devices is detected by
OpenCV.

• CV_CAP_IEEE1394 : Usable if a third party library dedicated to firewire devices is detected by
OpenCV.

30 CHAPTER 1. IMAGE MANIPULATION

• CV_CAP_DC1394 : Usable if a third party library dedicated to firewire devices is detected by
OpenCV.

• CV_CAP_CMU1394 : Usable if a third party library dedicated to firewire devices is detected by
OpenCV.

If we have more than one device with the expected type it is possible to choose the one to use. Notice
that each camera is linked to a number which represents its index. The first one is indexed by 0, the second
by 1 and so on. For example, if we have two firewire cameras, to select the first one or the second one we
can use :

1 g.setDeviceType(CV_CAP_IEEE1394+0); //The first camera
2

3 g.setDeviceType(CV_CAP_IEEE1394+1); //The second camera

Initialisation We have then to initialize the grabber.

1 g.open();

Camera settings manipulation Two steps are necessary to set specific camera settings. First you have to
set the camera video size, and then the framerate.

Video size setting The camera video size can be set by setWidth(...) and setHeight(...).
The current camera video size is given by getWidth() and getHeight().

Framerate setting The camera framerate can be set by setFramerate(...). According to the
OpenCV documentation, the frame rate can be modified only if the camera allows it. The current camera
framerate is given by getFramerate(...).

Acquisition The acquisition is done using the acquire(...) function .

1 while(1)
2 g.acquire(I);

If an image is available in the framebuffer, it returns this image in I. In the other case, it waits for a new
one.

Closing The framegrabber closing useful to stop the image capture is done either by the
vpOpenCVGrabber destructor, or by an explicit call to the close() function.

Problem under Windows A problem can appear under Windows depending on the camera you use. In-
deed the image can be flipped vertically. If you see such a problem, you can fix it by using the function
setFlip(...).

1 g.setFlip(true);

1.4. IMAGE ACQUISITION 31

Here an example of single camera capture. This example is also available in the ViSP source tree in
example/manual/image-manipulation/manGrabOpenCV.cpp. More complete examples can also
be found in example/framegrabber/grabOpenCV.cpp in the ViSP source tree.

1 #include <visp/vpImage.h>
2 #include <visp/vpOpenCVGrabber.h>
3

4 int main(){
5 vpImage<unsigned char> I; // Grey level image
6

7 g.open(); // Initialize the grabber
8

9 g.setWidth(640);
10 g.setHeight(480); // If the camera supports 640x480 image size
11 g.setFramerate(30); // If the camera supports 30fps framerate
12

13 while(1)
14 g.acquire(I); // Acquire an image
15 }

32 CHAPTER 1. IMAGE MANIPULATION

Chapter 2

Tracking in image sequences

2.1 Tracking a blob

In ViSP blob trackers are implemented in vpDot and vpDot2 classes. Both classes track set of pixels
with specific value. To belong to a blob or dot, a pixel value has to be between a minimum and a maxi-
mum value: λmin < I(i, j) < λmax with I the current image where you track the dot and i, j the pixel
coordinates. In both classes, these values can be defined with the functions: setGrayLevelMin(int),
setGrayLevelMax(int) and setGrayLevelPrecision(double).
vpDot and vpDot2 classes track dots with two different approaches, the two next subsection describe their
principle.

2.1.1 vpDot

Principle

vpDot starts from one point and looks to its connexities in order to know if they are part of the dot or not.
A connexity is part of the dot if its value is also between the ranges.
The connexities scheme can be either 4 or 8 and can be changed by the function
setConnexity(vpConnexityType).

(a) (b)

Figure 2.1: (a) Four connexities, (b) Eight connexities.

This blob tracking is recursive. It goes through the neighborhood until it reaches the border. Reaching
the border means that one of the connexity of the current pixel is out of range.

34 CHAPTER 2. TRACKING IN IMAGE SEQUENCES

Example

1 #include <visp/vpImage.h>
2 #include <visp/vpImageIo.h>
3 #include <visp/vpImagePoint.h>
4 #include <visp/vpDot.h>
5 #include <visp/vpDisplayX.h>
6 #include <visp/vpVideoReader.h>
7

8 int main(int argc, const char ** argv)
9 {

10 vpImage<unsigned char> I;
11

12 vpVideoReader reader;
13 reader.setFileName("videoTest.mpg");
14 reader.open(I);
15 reader.acquire(I);
16

17 vpDisplayX display;
18

19 display.init(I, 640, 480, "Test tracking") ;
20 vpDisplay::display(I) ;
21 vpDisplay::flush(I);
22

23 vpDot d ;
24

25 // by using setGraphics, we request to see the all the pixel of the dot
26 // in green on the screen.
27 d.setGraphics(true) ;
28

29 // we can also request to compute the dot moment m00, m10, m01, m11, m20, m02
30 d.setComputeMoments(true);
31

32 //We choose the connexity scheme
33 d.setConnexity(vpDot::CONNEXITY_4);
34

35 d.initTracking(I) ; //Tracking initialisation (by click)
36

37 long numberOfFrame = 200;
38 long currentFrame = 0;
39 while (currentFrame < numberOfFrame)
40 {
41 reader.getFrame(I,currentFrame)
42 d.track(I) ;
43 vpImagePoint cog = d.getCog(); //We get the center of Gravity
44

45 vpDisplay::display(I) ;
46 // display a red cross (size 10) in the image at the dot center
47 // of gravity location
48 vpDisplay::displayCross(I, cog, 10, vpColor::red) ;
49 vpDisplay::flush(I) ;
50

51 currentFrame++;
52 }
53

54 return 0;
55 }

Listing 2.1: Exemple of vpDot tracking.

2.1. TRACKING A BLOB 35

2.1.2 vpDot2

Principle

Contrary to vpDot, vpDot2 doesn’t go through all the neighborhood of the starting point. Starting from
a point A, vpDot2 tries to reach the “right border”. Once the border has been reached, it just consists in
following it. This creates a Freeman chain.

(a) (b) (c)

Figure 2.2: (a) Example of vpDot2 tracking using 8-connexities neighborhood, (b) Corresponding Freeman
values for four connexities, (c) Corresponding Freeman value for eight connexities.

Let’s imagine the user clicked on the point A from the figure 2.2a to initialise the dot tracking. It will
go all way right until neighbor are part of the dot and until the border is reached (grey arrow figure 2.2a).
Afterwards, it will follow the border using connexities values and will create a Freeman chain. For the
example presented in the figure 2.2a, and using the code of figure 2.2c (because it is a 8-connexities
neighborhood), the Freeman chaine associated to the border will be : "2 3 4 5 5 6 0 0 1".

Remark: vpDot2 is much more faster than vpDot because it doesn’t need to go through all the
neighbors of the initial point.

Moreover, in vpDot2, it’s also possible to specify the shape that the tracking must have by using the
function vpDot2::setEllipsoidShapePrecision(double). The value passed as parameter is be-
tween 0 and 1. A zero value means you want to track a non ellipsoid shape dot.

Example

vpDot2 works the same way as vpDot. You can have a look at the algorithm 2.1 and change vpDot by
vpDot2.

36 CHAPTER 2. TRACKING IN IMAGE SEQUENCES

2.2 Moving-edge trackers

2.2.1 General principle

In ViSP, the edge trackers are based on the spatiotemporal Moving Edge (ME) algorithm ([2]). This
algorithm does not require an edge extraction since it manipulates only sample points and image intensities.

Subsequently, the edges can be approximated to any type of curve. In ViSP, line, ellipse and Nurbs
trackers are implemented.

Each point, sampling the curve, is tracked from one image to another along the normal to the curve at
this point. This search is performed using convolution in order to have a real-time tracking. The convolution
mask depends on the angle in the image of the normal to the curve for the given sample. These masks are
precomputed during the initialisation of the algorithm. See figure 2.3 for more details.

(a) (b)

100 100 100

0 0 0

100 100 0

(d)

(c)

 100 0 !100

!100 !100 !100

0 !100 !100

Figure 2.3: l(r)t: edge at the previous iteration. In (a), the arrows represent the search range along the
normal for each sample point. In (b), every candidate position is tested by a convolution with predetermined
mask depending on the angle of the normal. (c) and (d) represent the masks for an angle of respectively
180 deg and 45 deg.

The equation of the curve is computed from the sample points coordinates. In order to be robust to the
image processing errors, a robust technique (M-Estimator, [3]) is used during the minimisation.

2.2.2 Implementation

2.2.2.1 General framework

As explained in the previous section, the trackers are based on a set of sample points. Some common
declarations have been implemented in the generic vpMeTracker class. This class cannot be used directly
since some of its functions are pure virtual.

A minimal prototype for this class is:

1 class vpMeTracker
2 {
3 // List of tracked moving edge points
4 std::list<vpMeSite> list ;
5 // Moving edge initialisation parameters
6 vpMe *me ;

2.2. MOVING-EDGE TRACKERS 37

7

8 // Constructor/destructor
9 vpMeTracker() ;

10 vpMeTracker(const vpMeTracker& meTracker) ;
11 virtual ~vpMeTracker() ;
12 void init() ;
13

14 // Display contour
15 virtual void display(const vpImage<unsigned char> &I, vpColor col)=0;
16 // Sample pixels at a given interval
17 virtual void sample(const vpImage<unsigned char> &image)=0;
18

19 void initTracking(const vpImage<unsigned char>& I);
20 // Track sampled pixels
21 void track(const vpImage<unsigned char>& I);
22 // Displays the status of moving edge sites
23 void display(const vpImage<unsigned char>& I);
24 // Set the moving edges parameters.
25 void setMe(vpMe *me);
26 };

Some of the functions, the pure virtual ones, depend on the type of curve to track, while others, corre-
sponding to the low level tracking, are implemented in this generic class.

A vpMeSite is a sample point. It contains the position of the points and some information concerning
the low level tracking (for example the image intensity).

The me attribute contains the configuration of the tracker. For more details, please refer to section 2.2.3.

2.2.3 Moving edge configuration

Moving edge trackers implemented in ViSP are based on the tracking of independant vpMeSite. This
tracking is quite robust to changes in illumination and noise, but it still needs to be configured with a couple
of parameters. This configuration is implemented in the vpMe class.

A minimal prototype for the vpMe class is:

1 class vpMe
2 {
3 double threshold; // Likelihood ratio threshold
4 double mu1; // Contrast continuity parameter (left boundary)
5 double mu2; // Contrast continuity parameter (right boundary)
6 unsigned int range; // Seek range on both sides of the reference pixel
7 unsigned int mask_size; // Convolution masks’ size in pixels (masks are square)
8 double sample_step; // Distance between sampled points (in pixels)
9 int points_to_track; // Number of points to track (used only for NURBS tracking)

10 unsigned int n_mask; // Number of convolution masks available for tracking; defines resolution
11 unsigned int anglestep; // number of oriented masks used to perform the convolution
12

13 // Default constructor that initiale the previous parameters
14 vpMe::vpMe()
15 {
16 threshold = 1500 ;
17 mu1 = 0.5 ;
18 mu2 = 0.5 ;
19 range = 4 ;
20 mask_size = 5 ;
21 sample_step = 10 ;
22 n_mask = 180 ;
23 anglestep = (180 / n_mask) ;
24 ...
25 }
26

27 // Parameter setters

38 CHAPTER 2. TRACKING IN IMAGE SEQUENCES

28 void setThreshold(const double t) { threshold = t; } // Set the likelihood threshold
29 void setMu1(const double mu1) { this->mu1 = mu1; }
30 void setMu2(const double mu2) { this->mu2 = mu2; }
31 void setRange(const unsigned int r) { range = r; }
32 void setMaskSize(const unsigned int s) { mask_size = s; ... }
33 void setSampleStep(const double s) { sample_step = s; }
34 void setPointsToTrack(const int n) { points_to_track = n; }
35 void setMaskNumber(const unsigned int n) { n_mask = n; anglestep = 180 / n_mask; ...}
36 };

When a candidate position is searched along the normal to the curve, the results of the convolution
between the image and the mask is compared to the threshold value. The higher the threshold is, the
sharper the transition must be to accept a point. Using a low value facilitate the detection of the edge in a
low contrast environment, however it may introduce outliers in the minimisation.

The mu1 and mu2 values are used to reject a new candidate position for the sample point if the new
convolution is too small (for mu1) or too high (for mu2) compared to the previous one. For example, if
mu1 = mu2 = 0.5, the sample point is accepted only if the value of the new convolution is between 50%
and 150% of the previous convolution. This procedure allows to reject points with a different transition
(black-to-white instead of the previous white-to-black for example).

The range attribute corresponds to the distance in pixel along the normal to the curve where the new
edge is searched. This value is dependant on the expected displacement of the edge between two consecutive
images. The higher the value is, the slower will be the algorithm and the more there will be outliers.

The anglestep and sample_step attributes correspond to the distance between two consecutives
sample points on a curve. If the object is very simple, and if the environment is not too noisy, a high value
can be sufficient.

The mask_size value corresponds to the size of the convolution mask. This value influences the
threshold attribute. Usually, a size of 5 or 7 allows a good detection and a good framerate.

The n_mask corresponds to the number of mask used to compute the angle of the edge at the sampling
point. If n_mask = 180, the step, in degree, between two consecutive mask is 360◦

180 = 2◦.

2.2.3.1 Line tracker

The vpMeLine class inherits from the generic vpMeTracker and computes the equation of a straight line
from the sample points.

The equation of a line is:

ai+ bj + c = 0 (2.1)

Or, in polar coordinates:

i cos(θ) + b sin(θ)− ρ = 0 (2.2)

With:

θ = arctan(
b

a
) (2.3)

ρ =
−c√
a2 + b2

(2.4)

2.2. MOVING-EDGE TRACKERS 39

δ

jj

δ

i i

ρ > 0
ρ < 0

θ

θ

Figure 2.4: Convention to compute the values of (ρ, θ). The dashed side of the line represents the darkest
region. Left figure shows the case of a white to dark pixel intensity transition, while the right figure shows
a dark to white transition.

θ can be between 0 and 2π. ρ can be positive or negative. For the vpMeLine, the values are dependent
on the pixel intensity transition (white-to-dark or dark-to-white relatively to the top left corner of the image)
in the middle of the line (see figure 2.4).

The extremities of the line are updated at every iteration. A new point is added if its response to the edge
detector is similar to the closest points belonging to the line.

The minimisation computes the new a, b and c parameters of the line, however the ρ, θ values are also
available.

An example of use is available in ViSP (example/tracking/trackMeLine.cpp). A minimal exam-
ple is:

1 #include <visp/vpImage.h>
2 #include <visp/vpMeLine.h>
3

4 int main()
5 {
6 vpImage<unsigned char> I(240, 320);
7

8 // acquire an image (from a file, from a webcam, ...).
9

10 // Set the moving-edges tracker parameters
11 vpMe me;
12 me.setRange(25);
13 me.setPointsToTrack(20);
14 me.setThreshold(15000);
15 me.setSampleStep(10);
16

17 // Initialize the moving-edges line tracker parameters
18 vpMeLine line;
19 line.setMe(&me);
20

21 // Initialize the tracker by clicking on two image points
22 line.initTracking(I);
23

24 while (1)
25 {
26 // ... Here the code to read or grab the next image.
27

28 // Track the line.

40 CHAPTER 2. TRACKING IN IMAGE SEQUENCES

29 line.track(I);
30

31 std::cout << "(rho,theta) = (" << line.getRho() << "," << line.getTheta() << ")" << std::endl;
32 }
33 return 0;
34 }

2.2.3.2 Ellipse-circle tracker

The vpMeEllipse class inherits from the generic vpMeTracker and computes the equation of an ellipse
or a circle.

The generic equation of an ellipse, defined by the points (i, j), is:

i2 +K0j
2 + 2K1ij + 2K2i+ 2K3j +K4 = 0 (2.5)

In the case of a circle, K0 = 1 and K1 = 0.
It is also possible to describe the equation of the ellipse using three parameters a, b and e. They represent

respectively the semiminor axis, the semimajor axis and the angle between the major axis and the i axis (see
figure 2.5).

j

i

a
b

e

Figure 2.5: Definition of the (a, b, c) parameters.

In that case, the coordinates of of a point (i, j) which belongs to the ellipse are given by:{
i = ic + bcos(e)cos(α)− asin(e)sin(α)
j = jc + bsin(e)cos(α)− acos(e)sin(α) (2.6)

with (ic, jc) the center of the ellipse and α the angle between [0, 2π] covering the ellipse:
Along with the equation of the ellipse, several moments (up to the second order) are computed. For

example, the 0 order moment can be obtained with the get_m00() method.
If the pattern to track is a circle, it is possible to enforce this constraint with the method

setCircle(true). In that case, the minimisation does not take into account the parameters K0 and
K1. The result is therefore more robust.

An example is available in ViSP (example/tracking/trackMeEllipse.cpp). The minimal ex-
ample is strictly similar to the example for the line tracker (except for the getRho() and getTheta()

methods).

2.3. KEYPOINT DETECTION AND MATCHING 41

(i, j) point

α

Figure 2.6: Definition of the α angle.

2.2.3.3 Nurbs tracker

Nurbs stands for Non-Uniform Rational Basis Spline. The vpMeNurbs class inherits from the generic
vpMeTracker and intends to fit a Nurbs to the detected moving edges.

A Nurbs can be defined by:

• a knot vector U = u0, ..., um, with ui < ui+1, i = 0, ...,m. The first and the last values are copied p
times, with p the degree of the B-Spline basis functions.

• the B-Spline basis functions Ni,p defined as:

Ni,0(u) =

{
1 if ui ≤ ui+1

0 else
(2.7)

Ni,p(u) =
u− ui
ui+1 − ui

Ni,p−1(u) +
ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1 (2.8)

• the control points Pi (defined by the images points).

• the weights wi associated to each points (wi ≥ 0).

It is possible to use the Canny edge detector to seek the new extremities of the curve (with the
method seekExtremitiesCanny()). This possibility is activated only if OpenCV (http://opencv.
willowgarage.com) is linked with ViSP.

An example is available in ViSP (example/tracking/trackMeNurbs.cpp). The minimal example
is strictly similar to the example for the line tracker (except for the getRho() and getTheta() methods).

2.3 KeyPoint detection and matching

It is possible to extract in an image a set of points of interest. These points are robust to some modifications
in the image (change in illumination, change in position,...) so that they can be detected on several images.
A signature for each point is extracted in the neighbouring environment and is used to match the same point
between two different images. The state of the art contains a lot of different algorithms, more or less robust
to change in illumination, in orientation, in scale,...

Nowadays, two algorithms are available in ViSP:

• SURF: stands for Speeded Up Robust Feature [1].

• Ferns: [5].

http://opencv.willowgarage.com
http://opencv.willowgarage.com

42 CHAPTER 2. TRACKING IN IMAGE SEQUENCES

2.3.1 SURF

2.3.1.1 General description

The Speeded Up Robust Feature (SURF) algorithm [1] is an image point detector and descriptor. SURF
detects blob-like features; bright region in a dark background and vice versa. For each point, a signature or
descriptor of the neighbouring region is computed. The descriptor is either a vector of 64 or 128 values.

This detector is fast (it is possible to achieve a real-time application) and is invariant in translation, in
rotation and in scale. However, it is not invariant to affine transformations.

2.3.1.2 Implementation

The SURF algorithm is implemented in the vpKeyPointSurf class. It requires OpenCV to work. This
class inherits from the pure virtual vpBasicKeyPoint that contains the list of keypoints in the reference
image and in the current image.

The following minimal prototype shows the main functions:

1 class vpKeyPointSurf: public vpBasicKeyPoint
2 {
3 vpKeyPointSurf ()
4 virtual ~vpKeyPointSurf ()
5 unsigned int buildReference (const vpImage< unsigned char > &I);
6

7 unsigned int matchPoint (const vpImage< unsigned char > &I);
8

9 void display (const vpImage< unsigned char > &Iref, const vpImage< unsigned char > &Icurrent);
10 void display (const vpImage< unsigned char > &Icurrent);
11

12 void setHessianThreshold (double hessianThreshold);
13 void setDescriptorType (vpDescriptorType descriptorType);
14

15 const vpImagePoint * getAllPointsInReferenceImage ();
16 void getReferencePoint (const unsigned int index, vpImagePoint &referencePoint);
17 void getMatchedPoints (const unsigned int index,
18 vpImagePoint &referencePoint, vpImagePoint ¤tPoint);
19

20 unsigned int getIndexInAllReferencePointList (const unsigned int indexInMatchedPointList);
21 unsigned int getReferencePointNumber () const;
22 unsigned int getMatchedPointNumber () const;
23

24 const std::vector< vpImagePoint > & getReferenceImagePointsList () const;
25 const std::vector< vpImagePoint > & getCurrentImagePointsList () const;
26 const std::vector< unsigned int > & getMatchedReferencePoints () const;
27 };

Only two parameters are required to use this class:

• the Hessian threshold: only the points with a determinant of the Hessian matrix greater than this
threshold are considered. The default value is equal to 500. To have more point, it is possible to lower
this value, however, the points will be less robusts;

• the type of descriptor: it can be either basic (64 values) or extended (128 values). With 64 values, the
computation of the descriptor and the matching are faster, however it may introduce more mismatch-
ing.

At every iteration, using getReferenceImagePointsList() it is possible to get the list of the re-
ference points while using getCurrentImagePointsList() it is possible to access to the list of the

2.3. KEYPOINT DETECTION AND MATCHING 43

current image points. The pairs of points are obtained using the getMatchedReferencePoints() func-
tion.

2.3.1.3 Example

A complete example is available in ViSP (example/key-point/keyPointSurf.cpp). The following
example shows the main functions:

1 #include <visp/vpConfig.h>
2 #include <visp/vpImage.h>
3 #include <visp/vpKeyPointSurf.h>
4

5 int main()
6 {
7 vpImage<unsigned char> Irefrence;
8 vpImage<unsigned char> Icurrent;
9 vpKeyPointSurf surf;

10

11 //First grab the reference image Irefrence
12

13 //Build the reference SURF points.
14 surf.buildReference(Irefrence);
15

16 //Then grab another image which represents the current image Icurrent
17

18 //Match points between the reference points and the SURF points computed in the current image.
19 surf.matchPoint(Icurrent);
20

21 //Display the matched points
22 surf.display(Irefrence, Icurrent);
23

24 return (0);
25 }

2.3.2 Ferns

2.3.2.1 General description

Unlike the SURF algorithm, based on direct computation of the signature in the image, this method is based
on a Bayesian Framework. Ferns [5] is a structure used to classify images patches. This method is really fast
and is more robust to affine transformation than the SURF algorithm, on the other hand this method usually
gives more outliers.

This algorithm is decomposed into two stages.
Firstly, the learning stage takes as input the reference pattern and extract the points of interests in it. A

patch is extracted for every point and several simple binary tests are performed on this patch and on some
synthesized views of it (to be robust to affine transformation). This learning stage is very time consumming
since it requires the generation of hundreds to thousands of affine transformations.

Secondly, during the detection phase, the points of interests are extracted in the image, and the same
simple binary tests are performed. This gives a response which is compared to the responses in the Ferns
structure produced during the learning stage. If two responses are similar, then the two points are likely to
be the same.

44 CHAPTER 2. TRACKING IN IMAGE SEQUENCES

2.3.2.2 Implementation

The class vpFernClassifier, based on OpenCV, implements the Ferns classifier. The points are detected
using the YAPE algorithm.

The minimal prototype below shows the main functions:

1 class vpFernClassifier
2 {
3 vpFernClassifier();
4

5 // build reference
6 virtual unsigned int buildReference(const vpImage<unsigned char> &I);
7 virtual unsigned int buildReference(const vpImage<unsigned char> &I,
8 vpImagePoint &iP,
9 const unsigned int height, const unsigned int width);

10 virtual unsigned int buildReference(const vpImage<unsigned char> &I,
11 const vpRect& rectangle);
12

13 // matching
14 virtual unsigned int matchPoint(const vpImage<unsigned char> &I);
15 virtual unsigned int matchPoint(const vpImage<unsigned char> &I,
16 vpImagePoint &iP,
17 const unsigned int height, const unsigned int width);
18 virtual unsigned int matchPoint(const vpImage<unsigned char> &I,
19 const vpRect& rectangle);
20

21 // display
22 virtual void display(const vpImage<unsigned char> &Iref,
23 const vpImage<unsigned char> &Icurrent);
24 virtual void display(const vpImage<unsigned char> &Icurrent);
25

26 // io methods
27 void load(const std::string& dataFile, const std::string& objectName);
28 void record(const std::string& objectName, const std::string& dataFile);
29

30 inline void setBlurSettings(const bool blur, int sigma, int size);
31

32 const std::vector<cv::Point2f>& getRefPt() const {return refPt;}
33 const std::vector<cv::Point2f>& getCurPt() const {return curPt;}
34

35 };

As described in the section 2.3.2.1, the algorithm needs to train a structure on the reference image
(function buildReference()). This training requires a lot of computation and may take up to several
minutes. This training has to be done once for every reference pattern to detect. The training can be saved
in a file (up to several hundred megabytes large) using the record(...) method.

To detect a reference pattern, the class must be initialised either directly (using the method
buildReference(...) or using a previous training (using the method load(...)). The detection and
the matching itself is performed using one of the matchPoint(...) method.

It is possible to get the points in the reference image and in the current image using either the methods
getRefPt() and getCurPt()) (in this case, the points are in the OpenCV format) or using the methods
getReferenceImagePointsList() and getCurrentImagePointsList() (in the ViSP format).

2.3.2.3 Example

A complete example is available in ViSP (example/key-point/fernClassifier.cpp). The following
example shows the main functions:

2.4. KLT 45

1 #include <visp/vpConfig.h>
2 #include <visp/vpImage.h>
3 #include <visp/vpFernClassifier.h>
4

5 int main()
6 {
7 vpImage<unsigned char> Ireference;
8 vpImage<unsigned char> Icurrent;
9 vpFernClassifier fern;

10

11 //First grab the reference image Ireference
12

13 //Build the reference SURF points.
14 fern.buildReference(Ireference);
15

16 //Then grab another image which represents the current image Icurrent
17

18 //Match points between the reference points and the SURF points computed in the current image.
19 fern.matchPoint(Icurrent);
20

21 //Display the matched points
22 fern.display(Irefrence, Icurrent);
23

24 return (0);
25 }

The use of this class is very similar to the vpKeyPointSurf class.

2.4 KLT

2.4.1 Description

The Kanade-Lucas-Tomasi (KLT) feature tracker ([4] and [6]) is designed to detect and track a set of image
points in a sequence of images. It assumes a small displacement between two consecutives frames.

The tracking is based on the gradients in the image. If d is the displacement of a feature x between two
images It and It+1 then

It+1(x) = It(x+ d) (2.9)

This expression can be approximated to:

It+1(x) ≈ It(x) + dI ′t(x) (2.10)

Only a patch surrounding a feature is used to compute the displacement of this feature. d is computed
by minimisation.

The points tracked are usually detected using the eigen-values of the matrix of the second order deriva-
tives of the image. Only points with high eigenvalues are considered as points of interests.

2.4.2 Implementation

The KLT tracker is implemented in ViSP in the vpKltOpencv class. It requires the OpenCV library to
work. A minimal prototype for this class is:

1 class vpKltOpencv
2 {
3 vpKltOpencv ()
4

46 CHAPTER 2. TRACKING IN IMAGE SEQUENCES

5 void initTracking (const IplImage *I, const IplImage *mask=NULL)
6

7 void track (const IplImage *I)
8

9 void display (const vpImage< unsigned char > &I, vpColor color=vpColor::red)
10

11 void setMaxFeatures (const int input)
12 void setWindowSize (const int input)
13 void setQuality (double input)
14 void setMinDistance (double input)
15 void setHarrisFreeParameter (double input)
16 void setBlockSize (const int input)
17 void setPyramidLevels (const int input)
18

19 int getNbFeatures () const
20 int getNbPrevFeatures () const
21 int getMaxFeatures () const
22

23 void getFeature (int index, int &id, float &x, float &y) const
24 void getPrevFeature (int index, int &id, float &x, float &y) const
25 void addFeature (const int &id, const float &x, const float &y)
26 void suppressFeature (int index)
27 };

This class takes as input a IplImage*, a structure defined by OpenCV. It is possible to cre-
ate an IplImage* from a vpImage using the function vpImageConvert::convert(vpImage<>&,

IplImage*). If it is possible, this conversion is direct and there is no memory recopy.
The detection and the tracking of the features depends on the following parameters:

• The maximum number of features (setMaxFeatures()): specifies the maximum number of features
to track in the image;

• The size of the window (setWindowSize()): specifies the size of the window for the subpixel
computation of the coordinates. It is also used for the computation of the optical flow (the new
position of the point);

• The quality (setQuality()): ratio between the maximal eigen value of the set of points and the
minimal one. Any points with an eigen-value below ratio×max(eigenvalues) is rejected;

• The minimal distance (setMinDistance()): the minimal distance, in pixel, between two points
during the detection;

• The Harris parameter (setHarrisFreeParameter()): the k value in the Harris detector. Usually,
a value of k = 0.04 is correct;

• The block size (setBlockSize()): the size of the averaging block used to track the features;

• The pyramid levels (setPyramidLevels()): the maximal level of pyramid. If the level is zero, then
no pyramid is computed for the optical flow. The higher the value, the more robust the tracking will
be to large displacement between two consecutive frames.

2.4.3 Example

A complete example of the class is available in ViSP (example/tracking/trackKltOpencv.cpp). A
minimal example is:

2.4. KLT 47

1 #include <visp/vpConfig.h>
2 #include <visp/vpImage.h>
3 #include <visp/vpDisplay.h>
4 #include <visp/vpKltOpencv.h>
5 #include <visp/vpImageConvert.h>
6

7 int main()
8 {
9 #if VISP_HAVE_OPENCV_VERSION >= 0x010100

10 vpImage<unsigned char> I;
11 IplImage* Icv = NULL;
12 vpKltOpencv klt;
13

14 //First grab the initial image I
15

16 //Convert the image I to the IplImage format.
17 vpImageConvert::convert(I, Icv);
18

19 //Initialise the tracking on the whole image.
20 klt.initTracking(Icv, NULL);
21

22 while(true)
23 {
24 // Grab a new image and convert it to the OpenCV format.
25 vpImageConvert::convert(I, Icv);
26

27 // Track the features on the current image.
28 klt.track(Icv);
29

30 // Display the features tracked at the current iteration.
31 klt.display(I);
32 }
33

34 cvReleaseImage(&Icv);
35 #else
36 std::cout << "vpKltOpencv requires ViSP with OpenCV." << std::endl;
37 #endif
38 return(0);
39 }

The conversion between the ViSP format and the OpenCV format is required for the initialisation and
for the tracking.

48 CHAPTER 2. TRACKING IN IMAGE SEQUENCES

Chapter 3

Networking

In this chapter, we will present networking tools through ViSP. Image processing and computer vision
algorithms are often heavy in term of computation. Whereas the capacity of computation of most robots is
limited. Embedding these algorithms in robots are sometimes hard and painfull, this is the reason why we
often need to externalise the computation. And one solution is through networking.

3.1 What is the Transmission Control Protocol

A network is defined as a connection between several computer used to exchange data according to a
specific protocol. This protocol is a system of digital message formats and rules for exchanging those
messages. In computer science several protocols are availables like the User Datagram Protocol (UDP) or
Transmission Control Protocol (TCP). Here, we will focus on the TCP protocol, which is the one used in
ViSP.

TCP is the one of the two original components of the suite, complementing the Internet Protocol (IP),
and therefore the entire suite is commonly referred to as TCP/IP. TCP provides reliable, ordered delivery
of a stream of octets from a program on one computer to another program on another computer. Typically,
when two (or more) computer are communicating, we have one server commucating with client(s). Note
that a client can also communicate with several servers.

3.2 Server vs Client

3.2.1 Overview

Figure 3.1: Overview of networking classes implemented in ViSP.

50 CHAPTER 3. NETWORKING

In ViSP, like in other libraries in general, servers and clients have a lot in common when there is a two ways
communication in place. This is the reason why both vpServer and vpClient derive from vpNetwork

(see Figure 3.1), which contains basic networking functionnalities. Indeed, here each member of the network
is able to:

1. Send messages over the network;

2. Receive messages from another computer on the network;

3. Create a connection with another computer of the network.

The messaging proccess corresponding to functionality (1) and (2) will be detailed in the next section
which shows two different approaches to send and receive messages depending on the situation. Concerning
the third point functionality, note that the connection to another member of the network is quite different for
the server side than the client one.

3.2.2 Server side

To create a network, it automatically requires a server. Then clients will be able to connect to this server. To
launch a server, all you need is a valid port. A port is an application-specific or process-specific software
construct serving as a communications endpoint in a computer’s host operating system. It is associated with
an IP address, which will be the adress where the server is launched. The code below shows how to create a
server on the port 35000. Note that the port must be below 65535.

1 vpServer server(35000);

Then, the server has to be started:

1 server.start();

As we said before, the ViSP server can have several clients. The maximum number of clients can be
fixed through the setMaxNumberOfClients(uint) function.

1 server.setMaxNumberOfClients(10);

Once the server is started and ready to host clients, the server’s task must be defined in an infinite loop.
The first thing it needs to do is obviously to check if there are new connected clients. This is done through
the checkForConnections() function.

1 while(1){
2 server.checkForConnections(); // Check if new clients are connected
3 // ...
4 // Messaging process
5 // ...
6 }

Listing 3.1: Before messages are processed, the server checks if new clients are connected.

3.2.3 Client side

As it is explained before, a network isn’t a network without any server. The server is used to host clients.
When a server is created and started, it opens a specified port associated to the IP of the server. In conclusion,
all the clients need to know the server’s IP or hostname and the openned port to connect to it.

3.3. MESSAGING PROCESS 51

1 vpClient client;
2 client.connectToHostname("servername", 35000); // connection by hostname
3 // OR
4 client.connectToIP("134.10.2.3",35000); // connection by IP

Note that a client can connect to several servers. Once the client is connected to a server, all you need is
to write the infinite loop corresponding to the messaging process (as we saw in Listing 3.1).

3.3 Messaging process

The advantage with TCP/IP is that there is no loss during data transmission. If the packages are not received
yet, they are stored in a queue. Besides, packages that are sent always arrive in the same order. For remind,
ViSP network tool has been designed in order to externalise computer vision algorithms. Basically, data that
will transit will be images, images points, velocities, matrices. . . As the algorithms hardly depend on these
data, no loss is admissible during transmission. This motivates TCP/IP choice.

However, before using ViSP network tool, it is required to define the dialogue in place between the
computers of the network. To this end, the followings questions may help.

• Does a member of the network know which other member he is sending/receiving messages?

• Does a member know what he is supposed to receive?

• Is he sending/receiving simple data?

• If a member receives messages from multiple other members, does he have to know in which order
he is supposed to receive those messages?

All these questions are primordials and tell you if you should rather use the object mode or the request
mode described in the following sections.

3.3.1 Object mode

Overview

Figure 3.2: Object mode situation.

The object mode corresponds to the simplest situation. Here we assume that there are only two computers
in the network: one server and one client (see Figure 3.2). So each member of the network obviously knows
who he is talking with. Besides, another important assumption is that each member knows exactly what and
when he is receiving (or what and when the other is sending). Once all these criteria are combined, writting

52 CHAPTER 3. NETWORKING

the transmission process for the infinite loop (Listing 3.1) is easy.

Either servers or clients can send and receive messages over the vpNetwork::send() and
vpNetwork::receive() functions.

1 // Server or client sending a message
2 server.send(&object, sizeof(object));
3 client.send(&object, sizeof(object));
4

5 // Server or client receiving a message
6 server.receive(&object, sizeof(object));
7 client.receive(&object, sizeof(object));

Listing 3.2: Sending and receiving messages in the object mode.

On Listing 3.2 we can see that object are passed as pointers. This is because the object passed as
parameters will be directly used to store the received data (in receiving case).

Warning : As we said before, the object mode can only be used on simple objects. By simple object,
we mean an object that doesn’t contain any pointer data, vectors, arrays, virtual methods, etc. Simplier, an
object that only contains primitive objects.

Example

Let’s make an example showing how to send and receive an interger over the network using the object mode.
Here, the server side will be quite similar to the client one, as they will have the same task.

1 #include <iostream>
2 #include <visp/vpServer.h>
3

4 int main(int argc,const char** argv)
5 {
6 int port = 35000;
7 vpServer serv(port); // Launch the server on localhost
8 serv.start();
9

10 bool run = true;
11 int val;
12

13 while(run){
14 serv.checkForConnections();
15

16 if(serv.getNumberOfClients() > 0)
17 {
18 if(serv.receive(&val) != sizeof(int)) // Receiving a value from the first client
19 std::cout << "Error while receiving" << std::endl;
20 else
21 std::cout << "Received : " << val << std::endl;
22

23 val ++;
24 if(serv.send(&val) != sizeof(int)) // Sending the new value to the first client
25 std::cout << "Error while sending" << std::endl;
26 else
27 std::cout << "Sending : " << val << std::endl;
28 }
29 }
30

31 return 0;
32 }

3.3. MESSAGING PROCESS 53

Listing 3.3: Server side example that shows how a server can receive an integer from a client, increment it
and send it back.

1 #include <iostream>
2 #include <visp/vpClient.h>
3

4 int main(int argc, char **argv)
5 {
6 std::string servername = "localhost";
7 unsigned int port = 35000;
8

9 vpClient client;
10 client.connectToHostname(servername, port);
11 // or client.connectToIP("127.0.0.1",port);
12

13 int val = 0;
14

15 while(1)
16 {
17 if(client.send(&val) != sizeof(int)) // Sending the new value to the first client
18 std::cout << "Error while sending" << std::endl;
19 else
20 std::cout << "Sending : " << val << std::endl;
21

22 if(client.receive(&val) != sizeof(int)) // Receiving a value from the first client
23 std::cout << "Error while receiving" << std::endl;
24 else
25 std::cout << "Received : " << val << std::endl;
26 }
27

28 return 0;
29 }

Listing 3.4: Client side example that shows how a client can connect to a server in order to send and receive
an integer.

3.3.2 Request mode

Overview

Figure 3.3: Request mode situation.

54 CHAPTER 3. NETWORKING

Contrary to the object mode, in request mode you don’t need to know who you are talking with. You also
don’t need to know what you are exactly supposed to receive. The data transiting on the network will be
requests.

What is a request? A request is an alternative way to send any kind of object, or even more
several ojects in the same time. A request is identified by a unique ID. Servers and clients are made to
handle vpRequest objects, which is an abstract class that has to be derived as users wishes. For better
understanding, let’s define a request aimed to be used for vpImage transmission.

1 #ifndef vpRequestImage_H
2 #define vpRequestImage_H
3

4 #include <visp/vpImage.h>
5 #include <visp/vpRequest.h>
6

7 class vpRequestImage : public vpRequest
8 {
9 private:

10 vpImage<unsigned char> *I;
11

12 public:
13 vpRequestImage();
14 vpRequestImage(vpImage<unsigned char> *);
15 ~vpRequestImage();
16

17 virtual void encode();
18 virtual void decode();
19 };

Listing 3.5: Declaration of vpRequestImage class that defines the request used to transmit images over
the network.

When deriving the vpRequest class, a user has to redefine encode() and decode() functions. Those
functions will be used to encode data when sending a message over the network and to decode data when
receiving this request.

1 #include <vpRequestImage.h>
2

3 vpRequestImage::vpRequestImage(){
4 request_id = "image";
5 }
6

7 vpRequestImage::vpRequestImage(vpImage<unsigned char> *Im){
8 request_id = "image";
9 I = Im;

10 }
11

12 vpRequestImage::~vpRequestImage(){}
13

14 void vpRequestImage::encode(){
15 clear();
16

17 unsigned int h = I->getHeight();
18 unsigned int w = I->getWidth();
19

20 addParameterObject(&h);
21 addParameterObject(&w);
22 addParameterObject(I->bitmap, h*w*sizeof(unsigned char));
23 }
24

3.3. MESSAGING PROCESS 55

25 void vpRequestImage::decode(){
26 if(listOfParams.size() == 3){
27 unsigned int h, w;
28 memcpy((void*)&h, (void*)listOfParams[0].c_str(), sizeof(unsigned int));
29 memcpy((void*)&w, (void*)listOfParams[1].c_str(), sizeof(unsigned int));
30

31 I->resize(h, w);
32 memcpy((void*)I->bitmap, (void*)listOfParams[2].c_str(), h*w*sizeof(unsigned char));
33 }
34 }

Listing 3.6: Definition of vpRequestImage class that defines the request used to transmit images over the
network

As we said, each request must have a different ID. In the example presented in Listing 3.6 the ID is set
to image. When a member of the network is trying to receive a request, he is first checking the ID. This ID
will specify the type of request received and will determine the decoding function to use. This is the reason
why, first, each member of the network has to know what kind of request he is suppose to receive. For that
we use the addDecodingRequest() method that can be used by the client or the server.

1 vpRequestImage reqImage(&image);
2 client.addDecodingRequest(&reqImage); // Can also be done on the server

Listing 3.7: Add a request to the list of request that the client or server is supposed to receive.

Let’s get back to the encode() and decode() functions. In the example presented Listing 3.7 we want
to encode and decode a vpImage. A vpRequest can have several parameters. When writing the encoding
and decoding functions of our request, it is necessary to identify what variables we need. Each variable will
represent one parameter. Parameters are added through the addParameterObject() function to add an
object or through the addParameter() to add a message corresponding to string or array of characters.
In vpRequestImage example presented Listing 3.6, to encode the image important variables are the size
of the image and the bitmap. That is why three call to addParameterObject() are necessary. When
decoding it, all you need to do is to retransform the parameters (that are now on string form) on the right
form. After decoding, each of them are stored in listOfParams internal variable in the same order than
during the encoding.

In request mode, sending and receiving requests works quite similarly than for the object mode.
1 vpRequestImage reqImage(&image);
2

3 // Sending
4 server.sendRequest(reqImage); // OR
5 server.sendAndEncodeRequest(reqImage);
6

7 // Receiving
8 server.receiveRequest(); // OR
9 server.receiveRequestOnce; // OR

10 server.receiveAndDecodeRequest(); // OR
11 server.receiveAndDecodeRequestOnce();

Listing 3.8: Transmission process in request mode. Note that the same methods can also be applied to a
client.

For the sending, sendRequest() function send a request and suppose that this request has al-
ready been encoded. Otherwise, sendAndEncodeRequest() can be used. It encodes plus sends
the request. Concerning the reception, receiveRequest() and receiveRequestOnce() meth-
ods receive requests but don’t decode them. On the other hand receiveAndDecodeRequest()

56 CHAPTER 3. NETWORKING

and receiveAndDecodeRequestOnce() receive and also decode the request. Note that
the difference between receiveRequest() and receiveRequestOnce() but also between
receiveAndDecodeRequest() and receiveAndDecodeRequestOnce() is that in the first case it re-
ceives requests until there is data in the transmission buffer, while in the second case it just receives once.

Example

Here is the complete example of a vpServer and vpClient communication using the request mode.
The client acquire images and sends them to the server that does the display. To this end we use the
vpRequestImage class defined before in Listings 3.5 and 3.6.

1 #include <visp/vpServer.h>
2 #include <visp/vpDisplayX.h>
3 #include <visp/vpDisplayGDI.h>
4

5 #include "vpRequestImage.h" // The content of this file is provided in Listing 3.5
6

7 int main(int argc,const char** argv)
8 {
9 vpServer serv(35000);

10 serv.start();
11

12 #ifdef UNIX
13 vpDisplayX display;
14 #else //Win32
15 vpDisplayGDI display;
16 #endif
17

18 vpImage<unsigned char> I;
19

20 vpRequestImage reqImage(&I); // The definition of this class is given in Listing 3.6
21 serv.addDecodingRequest(&reqImage);
22

23 bool run = true;
24 while(run){
25 serv.checkForConnections();
26

27 if(serv.getNumberOfClients() > 0){
28 int index = serv.receiveAndDecodeRequestOnce();
29 std::string id = serv.getRequestIdFromIndex(index);
30

31 if(id == reqImage.getId()){
32 if (! display.isInitialised())
33 display.init(I, -1, -1, "Remote display");
34

35 vpDisplay::display(I) ;
36 vpDisplay::flush(I);
37

38 if (vpDisplay::getClick(I, false)) // A click in the viewer to exit
39 run = false;
40 }
41 }
42 }
43 return 0;
44 }

Listing 3.9: Server side example that receive images as request from a client.

1 #include <iostream>
2

3 #include <visp/vpClient.h>

3.3. MESSAGING PROCESS 57

4 #include <visp/vpV4l2Grabber.h>
5 #include <visp/vpImage.h>
6

7 #include "vpRequestImage.h" // The content of this file is provided in Listing 3.5
8

9 int main(int argc, char **argv)
10 {
11 #if defined(VISP_HAVE_V4L2)
12 vpImage<unsigned char> I; // Create a gray level image container
13

14 // Create a grabber based on v4l2 third party lib (for usb cameras under Linux)
15 vpV4l2Grabber g;
16 g.setScale(1);
17 g.setInput(0);
18 g.open(I);
19

20 vpClient client;
21 client.connectToHostname("localhost", 35000);
22 //client.connectToIP("127.0.0.1",port);
23

24 vpRequestImage reqImage(&I); // The definition of this class is given in Listing 3.6
25 while(1)
26 {
27 // Acquire a new image
28 g.acquire(I);
29 client.sendAndEncodeRequest(reqImage);
30 }
31 return 0;
32 #endif
33 }

Listing 3.10: Client side example that acquires and sends images as request.

58 CHAPTER 3. NETWORKING

Bibliography

[1] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In 9th European Conf. on
Computer Vision, pages 404–417, Graz, Austria, May 2006.

[2] P. Bouthemy. A maximum likelihood framework for determining moving edges. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 11(5):499–511, May 1989.

[3] P.-J. Huber. Robust Statistics. Wiler, New York, 1981.

[4] B.D. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision.
In Int. Joint Conf. on Artificial Intelligence, IJCAI’81, pages 674–679, 1981.

[5] M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint recognition in ten lines of code. In IEEE Int. Conf. on
Computer Vision and Pattern Recognition, 2007.

[6] C. Tomasi and T. Kanade. Detection and tracking of point features. Technical Report CMU-CS-91-132,
Carnegie Mellon University Technical Report, April 1991.

	Image manipulation
	The image structure
	Image representation
	Image types
	Allocating and releasing images
	Accessing pixel data
	Image conversion
	Importing an image from a buffer
	Importing an image from OpenCV
	Importing an image from YARP

	Reading and writing images
	Reading and writing portable anymap (PNM) images
	Reading and writing PNG images
	Reading and writing JPEG images

	Graphical user interface
	Available GUI
	Example

	Image Acquisition
	Generic frame grabber interface
	Specific interface to video device

	Tracking in image sequences
	Tracking a blob
	vpDot
	vpDot2

	Moving-edge trackers
	General principle
	Implementation
	Moving edge configuration

	KeyPoint detection and matching
	SURF
	Ferns

	KLT
	Description
	Implementation
	Example

	Networking
	What is the Transmission Control Protocol
	Server vs Client
	Overview
	Server side
	Client side

	Messaging process
	Object mode
	Request mode

