
ViSP 2.9.0: Visual Servoing Platform

Getting Started for Windows

Lagadic project

http://www.irisa.fr/lagadic

February 18, 2014

François Chaumette

Eric Marchand

Nicolas Melchior

Fabien Spindler

2

CONTENTS 3

Contents

1 Introduction 4

2 Where and how downloading ViSP 4

3 How to build ViSP under Windows 5

4 How to use ViSP as a third party library under Windows 7
4.1 How to create a HelloWorld project using ViSP with CMake 7

4.2 How to create a HelloWorld project using ViSP without CMake 9

5 Additional information 12
5.1 Third party libraries used by ViSP . 12

5.2 How to execute ViSP examples . 15

4 2 WHERE AND HOW DOWNLOADING VISP

This getting started for Windows is for those who want to use ViSP under Windows and who do not

intend to participate in the development of the library. Its goal is to help them to start writing a program

using ViSP as a third party library without going into details. It does not replace the ViSP source code

documentation which can be consulted on the website:

http://www.irisa.fr/lagadic/visp

Thereafter, the different steps between the download and the use of the library will be described.

1 Introduction

Before to download ViSP and try to build it, it is advised to install an IDE (Visual C++, Borland, Eclipse,

. . .) and the last version of CMake which can be found at the address : http://www.cmake.org.

As described in section 5.1, some ViSP capabilities require third party libraries to be installed. But they

are not required to build ViSP. Don’t worry, if you use a function which requires another library you do not

have installed yet, you will be warned during the execution of your own program.

2 Where and how downloading ViSP

First you have to know that there are two ways to download ViSP source code. The simplest one consists in

downloading the zip file which can be found at the address:

http://www.irisa.fr/lagadic/visp/download.html

It contains a release version of the source code. Unzip the package in the folder of your choice and go

directly to Section 3.

The other way to recover ViSP is to download it from Subversion repository hosted on InriaGForge

http://gforge.inria.fr/projects/visp/. Subversion is a tool for a team of developers which enable to manage the

source code during the development process. The advantage is that you can have the current development

version of the code. The drawback is that it is not necessary stable and the last functions could be not

documented yet. Prior to download something from Subversion repository you have to install a Subversion

client like TortoiseSVN, either Slik Subversion or Subversion package from Cygwin. Then you can use the

following address to recover ViSP by checking out the source code files:

svn://scm.gforge.inria.fr/svn/visp/trunk/ViSP

Regardless the method you used to download ViSP, you have now a version of the source code which

must be build to be used.

http://www.irisa.fr/lagadic/visp
http://www.cmake.org
http://www.irisa.fr/lagadic/visp/download.html
http://gforge.inria.fr/projects/visp/
http://tortoisesvn.tigris.org/
http://www.sliksvn.com/
http://www.cygwin.com/

5

3 How to build ViSP under Windows

Now, the step consists in preparing the build by creating a project or a makefile depending on your IDE. It

will be done thanks to CMake.

1. Execute CMake to get the GUI presented Figure 1.

2. In the first box "Where is the source code" (see Fig. 1) you have to set the path to the folder which

contains the ViSP source code.

3. In the second box "Where to build the binaries" (see Fig. 1) set the path to the folder you choose to

contain ViSP binaries obtained after the build stage described at step 6. If it doesn’t exist yet, it will

be created automatically. Let us denote this path as VISP_BUILD_DIR.

An advice is to choose two different folders, one for the source code and another one for the build

version. There are two advantages to do this. Firstly, the folder which contains the source code will not

be contaminated by files created by CMake. So, if you want to modify ViSP it will be easier. Secondly,

it allows to have more than one build version of ViSP. Indeed, it exists numerous possibilities to build

it depending on the third party libraries you are using. So you could use the version which matches

the best to your own project.

4. Click on the "Configure" button (see Fig. 1). The IDE you want to use will be asked. You have to

indicate it in order to enable CMake to create the right project configuration files. Continue to click on

"Configure" until the "Generate" button becomes active. During this step you are allowed to modify

any options. Figure 2 shows for example how to print advanced options that can be modified like the

CMAKE_INSTALL_PREFIX variable used to specify where ViSP will be installed.

5. After clicking on "Configure", you will be allowed to click on "Generate" (see Fig. 2). CMake will

create the useful configuration files in the folder you indicate in the box "Where to build the binaries".

Now you are allowed to build ViSP binaries corresponding to the library and the examples.

Figure 1: CMake GUI obtained with CMake 2.8 that allows to configure ViSP on your computer.

6 3 HOW TO BUILD VISP UNDER WINDOWS

Figure 2: This CMake snapshot shows where to set the CMAKE_INSTALL_PREFIX variable specifying the

directory where ViSP will be installed after the build. By default, this variable is set to C:/Program
Files/VISP. As shown Fig. 10, this snapshot shows also the location of the menu that allows to print more

advanced options like the location of third party headers and libraries.

7

6. Open the project file which has been created by CMake. For example if you are using Microsoft

Visual Studio 2008, its name is VISP.sln. The screenshot Fig. 3 comes from this IDE but you will

find similar things with others.

Figure 3: VISP.sln Visual Studio solution file created by CMake opened with Microsoft Visual Studio

2008. To build ViSP library and all the examples select the ALL_BUILD project. To install ViSP headers

and library in the directory corresponding to the CMAKE_INSTALL_PREFIX variable select and build the

INSTALL project. To build the HTML documentation select and build the html-doc project.

7. The last thing you have to do is to build the ALL_BUILD project (see Fig. 3). Thus the library will be

created and the examples will be compiled. The binaries will be contained in the folder you indicate

in the box "Where to build the binaries". You can also build the INSTALL project which will install

the ViSP headers and library in the path corresponding to the CMAKE_INSTALL_PREFIX (by default

set to C:/Program Files/VISP). You are allowed to modify this installation path during step 4. In

order to produce the HTML documentation with Doxygen, you can build the html-doc project. The

documentation entry point is than VISP_BUILD_DIR/doc/html/index.html.

4 How to use ViSP as a third party library under Windows

4.1 How to create a HelloWorld project using ViSP with CMake

In this section you will learn how to create a HelloWorld Visual Studio project using ViSP as a third party

library. This step is very simple if you still use CMake to configure your project.

1. First you have to create a folder where you want to put the HelloWorld project.

2. Then create inside this folder the HelloWorld.cpp file you want to build and a text file called

CMakeLists.txt that corresponds to the HelloWorld configuration file that will be used by CMake.

The following simple example shows you to fill in these files

1

.

HelloWorld.cpp :

1HelloWorld.cpp and CMakeLists.txt files are available in ViSP source tree in

example/manual/hello-world/CMake directory.

8 4 HOW TO USE VISP AS A THIRD PARTY LIBRARY UNDER WINDOWS

1 #include <iostream>
2

3 #include <visp/vpDebug.h>
4 #include <visp/vpImage.h>
5 #include <visp/vpImageIo.h>
6

7 int main()
8 {
9 std::cout << "ViSP Hello World example" <<std::endl;

10

11 vpImage<unsigned char> I(288, 384);
12

13 I = 128;
14

15 std::cout << "ViSP creates \"./myimage.pgm\" B&W image " <<std::endl;
16 vpImageIo::write(I, "./myimage.pgm");
17

18 return 0;
19 }

CMakeLists.txt :

1 PROJECT(HelloWorld)
2

3 CMAKE_MINIMUM_REQUIRED(VERSION 2.6)
4

5 FIND_PACKAGE(VISP REQUIRED)
6 IF(VISP_FOUND)
7 INCLUDE(${VISP_USE_FILE})
8 ENDIF(VISP_FOUND)
9

10 ADD_EXECUTABLE(HelloWorld HelloWorld.cpp)

3. Then, start CMake to configure the HelloWorld project (see Fig. 4).

4. In the first box "Where is the source code" (see Fig. 4), indicate the path to your source code (ie the

path to the folder you created in step 1).

5. In the second box "Where to build the binaries" (see Fig. 4), indicate where you want to build the

binaries corresponding to your project.

6. You can now click on "Configure" (see Fig. 4).

If CMake says that it can’t find the ViSP library (VISP_DIR variable is than set to

VISP_DIR-NOTFOUND, see Fig. 4), you may indicate the path to the folder containing a build version

of ViSP. More precisely, you have to give the path to the ViSPConfig.cmake file. Typically, you can

find it in VISP_BUILD_DIR (replace VISP_BUILD_DIR with the path to the folder where you build

ViSP, see Section 3, step 3). If you install ViSP (see Section 3, step 7), you can also set VISP_DIR to

the following path C:/Program Files/VISP.

7. Then click on "Configure" until having the right to click on "Generate" button (see Fig. 4). It is

the same as for ViSP. CMake will create a project for your own IDE. You need now to download

the project (in our case the HelloWorld.sln Visual Studio solution file) in your IDE to build the

binaries.

The advantage to use CMake is that all the links are automatically done and especially with the third

party libraries on which ViSP is depending.

4.2 How to create a HelloWorld project using ViSP without CMake 9

Figure 4: CMake based configuration of the HelloWorld project that uses ViSP as a third party library.

4.2 How to create a HelloWorld project using ViSP without CMake

It is also possible to develop your project using ViSP as a third party library without the help of CMake.

In such a case, you have to set the properties of your project with additional include directories, prepro-

cessor definitions, language definition, library directories and library dependencies. In order to help users,

ViSP provides a visp-config.bat batch file that may give the additional properties values. This file is

produced during CMake configuration (see Section 3, step 4) and is located in VISP_BUILD_DIR/bin
directory. If you install ViSP (see Section 3, step 7), you will also found this file in C:/Program
Files/VISP/bin. The usage of this batch file is given by "visp-config.bat --help" executed in

a DOS command window. The following steps explain how to set the properties of a HelloWorld project

using the visp-config.bat outputs. Once your project is created, with Visual Studio you may edit its

properties.

1. Setting additional include directories: The first thing you have to do is to indicate the folders con-

taining the headers belonging to ViSP and the third party libraries used to build ViSP (see Fig. 5).

Note that the include directory for the ViSP library is "VISP_BUILD_DIR/include". If you in-

stall ViSP (see Section 3, step 7), the include directory for the ViSP library is rather C:/Program
Files/VISP/include. To get all the additional include directories you can copy

2

the result of the

"visp-build.bat --include" command executed in a DOS command window and paste it in

the box "Configuration Properties!C/C++!General! Additional include directories". Note that

the result of this command contains already ViSP include directory.

2Tip: To copy/past the output of thevisp-build.bat command we suggest to redirect the output in a text file by executing

for example "visp-build.bat --include > include.txt". The resulting include.txt file can than be

opened in the Wordpad from which the copy/past can be done easily.

10 4 HOW TO USE VISP AS A THIRD PARTY LIBRARY UNDER WINDOWS

Figure 5: This Visual Studio snapshot shows where to set the additional include directories requested to

build the HelloWorld project using ViSP as a third party library. The list of additional include directories

may be obtained by executing "visp-config.bat --include" in a DOS command window.

2. Setting additional preprocessor definitions: At least you need to add the WIN32 preprocessor de-

finition. To get all the requested additional preprocessor definitions you can copy

1

the result of

"visp-build.bat --def" command executed in a DOS command window and paste it in the box

"Configuration Properties!C/C++!Preprocessor!Preprocessor Definitions" as shown Figure 6.

Note that the result given by the .bat file contains already the WIN32 preprocessor definition.

3. Setting OpenMP support: Since ViSP-2.6.2 ViSP may support OpenMP parallelization. If /visp/ was

built with OpenMP support, than you need also to activate OpenMP support to build the HelloWorld

project.

4. Setting additional library directories: To set all the additional library directories you can copy

1

the

result of "visp-build.bat --libpath" command executed in a DOS command window and

paste it in the box "Configuration Properties!Linker!General!Additional Library Directories"

as shown Figure 7. Note that ViSP library path is "VISP_BUILD_DIR/lib/${Outdir}" with

${Outdir} equal to Debug or Release depending on your HelloWorld configuration. If you in-

stall ViSP (see Section 3, step 7), ViSP library path is rather C:/Program Files/VISP/lib. In all

the cases, the result of this command contains already ViSP library directory.

5. Setting additional library dependencies : ViSP library name is visp-2.lib. You may also add

winmm.lib library which is used in ViSP for time management. Depending on your configura-

tion (debug or release), to set all the additional libraries HelloWorld depends on, you can copy

1

the result of "visp-build.bat --libs-debug" or "visp-build.bat --libs-optimized"

command executed in a DOS command window and paste it in the box "Configuration

4.2 How to create a HelloWorld project using ViSP without CMake 11

Figure 6: This Visual Studio snapshot shows where to set the additional preprocessor definitions requested

to build the HelloWorld project using ViSP as a third party library. The list of additional preprocessor

definitions may be obtained by executing "visp-config.bat --def" in a DOS command window.

Figure 7: This Visual Studio snapshot shows where to set the additional library directories requested to build

the HelloWorld project using ViSP as a third party library. The list of additional library directories may be

obtained by executing "visp-config.bat --libpath" in a DOS command window.

12 5 ADDITIONAL INFORMATION

Properties!Linker!Input!Additional Dependencies" as shown Figure 8. Note that the result given

by the .bat file contains already the winmm.lib library.

Figure 8: This Visual Studio snapshot shows where to set the additional library dependencies requested to

build the HelloWorld project using ViSP as a third party library. The list of additional library dependencies

may be obtained by executing "visp-config.bat --libs" in a DOS command window.

5 Additional information

5.1 Third party libraries used by ViSP

Many ViSP functionalities require third party libraries. This is in particular the case for simulation,

framegrabbing and image viewer capabilities that require respectively Ogre 3D or Coin, SoQt and Qt, CMU

1394 or OpenCV and GTK2 or the Graphics Device Interface (GDI). If you want to know the entire list of

third party libraries that can be used in ViSP you can get the information on ViSP website. Table 1 summa-

rize these third party libraries and gives the environment variable names that could be set to help CMake to

detect them.

If you are interested to know which are the third party libraries used to build ViSP on your computer,

you can first check the ViSP-third-party.txt text file produced during the CMake configuration stage

described in Section 3, step 4. This file is generated in VISP_BUILD_DIR directory. Figure 9 shows and

example of such a ViSP-third-party.txt file content.

An other way to check which are the third party libraries that will be used while building ViSP, is to

choose the "Advanced View" option in CMake GUI to have access to the CMake variables as it is shown

in the screenshot Fig. 10. If you are sure you install a third party library which is noted as NOT_FOUND, it

seems that you installed it in a not common folder. So you have the choice to set an environment variable to

5.1 Third party libraries used by ViSP 13

ViSP capabilities Third party library Corresponding environment variable

Image viewer

a

GDI DXSDK_DIR or WINSDK_DIR
Direct3D DXSDK_DIR
GTK2 GTK2_DIR
OpenCV OPENCV_DIR

SVD computation

b

Lapack LAPACK_DIR
OpenCV OPENCV_DIR
GSL GSL_DIR

OpenCV OpenCV_DIR
Image bridges

c

Yarp YARP_DIR
and computer vision

d

Coin COIN_DIR or COINDIR
XML2 XML2_DIR

Frame grabbing

e

CMU 1394 CMU1394_HOME
OpenCV OPENCV_DIR

Robots

f

Biclops BICLOPS_HOME
Pioneer ARIA_HOME

Simulator

Ogre OGRE_HOME and OGRE_MEDIA_DIR
OIS none

Coin COIN_DIR or COINDIR
SoQt COIN_DIR or COINDIR or SOQT_DIR
Qt QTDIR
Coin COIN_DIR or COINDIR
SoWin COIN_DIR or COINDIR or SOWIN_DIR

Camera parameters parser

XML2 XML2_DIR
iconv XML2_DIR or ICONV_DIR

HTML documentation

Doxygen DOXYGEN_DIR
Graphviz GRAPHVIZ_DIR

Image reading and writing

libjpeg LIBJPEG_DIR
libpng LIBPNG_DIR

Table 1: List of environment variables that can be set throw the Windows Control Panel to help CMake to

detect third party libraries that may be used to build ViSP.

a

Only one device is requested to show ViSP images. GDI, Direct3D, GTK2 and OpenCV are alternatives. We suggest to use

GDI which is native on Windows.

b

To compute the pseudo inverse based on the Singular Value Decomposition (SVD) ViSP may use one of the following Lapack,

OpenCV or GSL third party library. If Lapack is not found, OpenCV will be used. Then, if OpenCV is not found the Gnu Scientific

Library (GSL) will be used. Finally if none of those libraries are found, an internal implementation will be used. We suggest to

install Lapack.

c

ViSP provides OpenCV and Yarp images bridges.

d

ViSP exploit OpenCV features based for example on key points. Coin and XML2 are used by ViSP model-based tracker (MBT)

to load vrml cad models of the object to track and parse tracker parameters respectively .

e

ViSP implements wrapper over CMU 1394 able to grab images from firewire cameras and OpenCV able to handle firewire and

USB cameras.

f

These robots are interfaced with their native drivers.

14 5 ADDITIONAL INFORMATION

Figure 9: Example of the ViSP-third-party.txt file content that indicates which are the third party

libraries detected by CMake and used to build ViSP library on your computer.

5.2 How to execute ViSP examples 15

indicate the path to the library. Table 1 gives the list of the environment variables corresponding to the third

party libraries.

Figure 10: This CMake snapshot shows how to verify if third party libraries are taken into account while

building ViSP. If "Advanced View" is chosen in the menu you will get access to all CMake variables that

correspond to the location of third party headers and libraries. A variable set to NOT_FOUND indicates that

the corresponding third party library is not found.

CMake detects automatically the available third party libraries on your computer. But for some reasons,

you may not want to build ViSP with all the detected libraries. You can disable these libraries during

the CMake configuration (see Section 3, step 3). Indeed there are options named USE_THIRD_PARTY

(see Figure 11) which appear. In that case, THIRD_PARTY is the name of the third party library which

is automatically detected. To disable one of the third party library, uncheck the corresponding option (by

default they are all checked).

5.2 How to execute ViSP examples

Some ViSP examples require data like images or videos as input. They can be downloaded on ViSP website.

After download and unzip, you have to set the environment variable VISP_INPUT_IMAGE_PATH in the

Windows Control Panel. It must be set to the parent directory containing the unzip data. For example, if

you download the ViSP-images-2.8.0.zip file and unzip it in the folder C:/images, you will get a

new folder named C:/images/ViSP-images containing the data. You need than to set the environment

variable VISP_INPUT_IMAGE_PATH to C:/images. Now you should be able to execute the examples that

request input data.

16 5 ADDITIONAL INFORMATION

Figure 11: This CMake snapshot shows were you can find the options used to enable or disable the detected

third party libraries.

	Introduction
	Where and how downloading ViSP
	How to build ViSP under Windows
	How to use ViSP as a third party library under Windows
	How to create a HelloWorld project using ViSP with CMake
	How to create a HelloWorld project using ViSP without CMake

	Additional information
	Third party libraries used by ViSP
	How to execute ViSP examples

