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Chapter 1

Visual features

1.1 Visual features in ViSP

1.1.1 Visual features: overview

Let us first examine the visual features from a generic point of view. We will see later how this feature is
specialized when considering specific visual features such as points, lines, 3D rotations, moments, etc.

From a formal point of view a visual feature is nothing but:

• a vector s that defines the value of the visual feature

• an interaction matrix Ls that describes how s is modified when the camera is moving with a velocity
v:

ṡ = Lsv

• a method to compute the error s− s∗ where s∗ is the desired value of the visual feature.

The basic visual feature is contained in a class named vpBasicFeature. It is a virtual class that only
contains some protected members and pure virtual methods. It cannot be used by the end-user programmer
but it provides an interface with the control law computation class vpServo (see chapter 2).

A visual feature is mainly built on a vector s that defines the value of the visual information (that is s). It
also integrates pure virtual methods that return the value of the interaction matrix and the error (defining the
error is important since it is not always a simple subtraction). The prototype of the vpBasicFeature can
schematically be defined as follow (to which must be added constructors and destructors, copy operators,
etc.):

1 class vpBasicFeature {
2 private :
3 vpColVector s ; // state of the virtual feature
4 public :
5 double operator[](const int n) ; // acces to the state vector
6 // compute the interaction matrix
7 virtual vpMatrix interaction() const = 0;
8

9 // compute the error between two visual features
10 virtual vpColVector error(const vpBasicFeature &s_star) = 0 ;
11 } ;

Operators [] are also overloaded to have a direct access to the value of s.
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Let us note that the 3D information that is sometime (often) required to compute the interaction ma-
trix is not really part of the visual feature itself. It will be defined in the derived classes built upon the
vpBasicFeature class.

1.1.2 Derived visual features

As stated, the end-user cannot directly use the basic visual feature defined in the previous paragraph. There-
fore some classes are derived from vpBasicFeature. At this level, the goal is to allow the initialization
of the state vector and provide the instantiation of the pure virtual methods interaction(...) and
error(...). Many other functionalities can be added but are not directly of interest when dealing with
the visual servoing purpose.

ViSP provides the following derived features. We have several 2D features:

• vpFeaturePoint : Point s = (x, y),

• vpFeatureLine : Line s = (ρ, θ),

• vpFeatureEllipse : Ellipse s = (x, y, µ20, µ11, µ02),

• vpFeatureVanishingPoint : Point at infinity s = (x, y).

and several 3D features:

• vpFeaturePoint3D : 3D point s = (X,Y, Z),

• vpFeatureThetaU : the rotation c∗Rc or cRc∗ that the camera has to realize (expressed with the θu
parameterization),

• vpFeatureTranslation : the translation c∗tc or ctc∗ or cto that the camera has to realize.

1.1.3 Feature selection

When building a task (see Section 2.1), if dim s > 1, it is possible to select only a subset of the visual
feature using a selection mechanism. This process will be described in details in section 2.1.

1.1.4 From Trackers to visual features

A visual feature s is built from a measure x(t): s = s(x(t)). A set of function have been defined to compute
visual features from the output of the various trackers existing in ViSP.

These functions are defined through the vpFeatureBuilder class. Example of how to build visual
feature from trackers will be given in the next paragraph for each feature. Table 1.1 shows the various
possibility that have been already implemented in ViSP. Let us note that it is possible to add new feature
builder functions and that visual features parameters can be set without relying on these sets of functions.

1.2 2D visual features

1.2.1 Point

The typical mathematical model for a camera is defined by a perspective projection, such that any point M
with coordinates X = (X,Y, Z) is projected onto the image plane in a point m with coordinates x = (x, y)
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trackers
vpPoint vpLine vpCylinder vpCircle vpSphere vpMeLine vpDot vpDot2

vpFeaturePoint X X X
vpFeatureLine X X X

vpFeatureEllipse X X X X
vpFeatureVanishingPoint X X

vpFeaturePoint3D X

Table 1.1: Relation between visual features and trackers.

with:
x = X/Z , y = Y/Z (1.1)

By differentiating this equation, we get the variations in the image of the coordinates x and y of m with
respect to the speed Ẋ of the coordinates of point M :

ẋ =
[

1/Z 0 −X/Z2

0 1/Z −Y/Z2

]
Ẋ (1.2)

Whatever configuration is chosen (the eye-in-hand or eye-to-hand configuration, static or mobile point M ),
the speed Ẋ of M according to the kinematic screw v between the camera and its environment is given by
the fundamental kinematics equation:

Ẋ = −υ − ω ×X = −υ + [X]× ω =
[ −I3 [X]×

]
v (1.3)

Equation (1.2) can then be simplifed using Equation (1.1), written in the form:

ẋ = Lx(x, Z) v (1.4)

where:

Lx(x, Z) =
[ −1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z 1 + y2 −xy −x
]

(1.5)

The point is certainly the most classical visual feature used in visual servoing. It is implemented in ViSP
in the vpFeaturePoint class.

We present here how this class is implemented in ViSP. It could be considered as an example for people
who want to add new visual features in the ViSP kernel.

vpFeaturePoint implementation. As pointed out in section 1.1.1, a feature is defined by:

• a vector s that defines the value of the visual feature: in the case of the point s = (x, y) ;

• a set of 3D information that are necessary to compute the interaction matrix: in the case of the point
we have only the depth Z ;

• an interaction matrix Ls that describes how s is modified when the camera is moving with a velocity
v. In the case of the point it is defined by equation (1.5) ;
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• a method to compute the error s− s∗. In the case of the point we simply have:

s− s∗ =
[
x− x∗
y − y∗

]
A minimal prototype for the vpFeaturePoint class can be given by (complete prototype can be found

in the src/visual-features/vpFeaturePoint.h file):

1 class vpFeaturePoint : public vpBasicFeature {
2 protected :
3 double Z ;
4 public:
5 void set_x(const double x) { vpBasicFeature::s[0] = x ; }
6 void set_y(const double y) { vpBasicFeature::s[1] = y ; }
7 void set_Z(const double Z) { this->Z = Z ; }
8 double get_x() const { return vpBasicFeature::s[0] ; }
9 double get_y() const { return vpBasicFeature::s[1] ; }

10

11 public:
12 vpMatrix interaction() ;
13 vpColVector error(const vpBasicFeatures& s_star) ;
14 } ;
15

16 vpMatrix
17 vpFeaturePoint::interaction() {
18 vpMatrix Ls ;
19 Ls.resize(2,6) ;
20

21 double x = s[0];
22 double y = s[1];
23

24 Ls[0][0] = - 1/Z ; Ls[0][1] = 0 ; Ls[0][2] = x/Z ; ... ;
25 Ls[1][0] = 0 ; Ls[1][1] = - 1/Z ; Ls[1][2] = y/Z ; ... ;
26 return Ls;
27 }
28

29 vpColVector
30 vpFeaturePoint::error(const vpBasicFeatures& s_star) {
31 vpColVector e ;
32 e = s - s_star ;
33 return e ;
34 }

1.2.2 Line

Let us recall that we use the (ρ, θ) representation for a line defined by:

x cos θ + y sin θ − ρ = 0 (1.6)

The relation that link the depth Z of a point of the line to its position in the image plane is given by

1/Z = Ax+By + C (1.7)

with A = −A1/D1, B = −B1/D1 and C = −C1/D1 where

A1X +B1Y + C1Z +D1 = 0 (1.8)

is the equation of a plane to which the line belong.
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If we differentiate Equation (1.6), which corresponds to the hypothesis that the image of a line remains
a straigh line whatever the camera’s motion, we get:

ρ̇+ (x sin θ − y cos θ) θ̇ = ẋ cos θ + ẏ sin θ , ∀(x, y) ∈ D (1.9)

Based on Equation (1.6), x is written according to y if cos θ = 0 (or y according to x if that is not the
case) and Equation (1.9) can then be rewritten, using (1.4) and (1.7):

(ρ̇+ ρ tan θ θ̇) + y (−θ̇/ cos θ) = K1 v + y K2 v , ∀y ∈ R (1.10)

with:
K1 = [ λ1 cos θ λ1 sin θ −λ1ρ sin θ − cos θ − ρ2/ cos θ −ρ tan θ ]
K2 = [ λ2 cos θ λ2 sin θ −λ2ρ ρ ρ tan θ 1/ cos θ ]

where λ1 = −Aρ/ cos θ − C and λ2 = A tan θ −B.
Immediately we infer that: {

ρ̇ = (K1 + ρ sin θ K2) v
θ̇ = − cos θ K2 v

(1.11)

hence:
Lρ = [ λρ cos θ λρ sin θ −λρρ (1 + ρ2) sin θ −(1 + ρ2) cos θ 0 ]
Lθ = [ λθ cos θ λθ sin θ −λθρ −ρ cos θ −ρ sin θ −1 ]

(1.12)

with λρ = −Aρ cos θ −Bρ sin θ − C and λθ = −A sin θ +B cos θ.

Cylinders Note that this feature can be use to model the interaction matrix related to the projection of the
two limbs of a cylinder. Knowing the equation of a cylinder in the camera frame:

(X −X0)2 + (Y − Y0)2 + (Z − Z0)2 − (αX + βY + γZ)2 −R2 = 0 (1.13)

where R is the radius of the cylinder, α, β and γ are the coordinates of its direction vector and X0, Y0 and
Z0 are the coordinates of the nearest point belonging to the cylinder axis from the projection center. In this
case, the coefficients of plane (1.8) which the limbs of the cylinder belong are:

A1 = γ Y0 − β Z0

B1 = α Z0 − γ X0

C1 = β X0 − α Y0

D1 =
√
X2

0 + Y 2
0 + Z2

0 −R2

The line is implemented in ViSP in the vpFeatureLine class.
We present here how this class is implemented in ViSP.

vpFeatureLine implementation. As pointed out in section 1.1.1, a feature is defined by:

• a vector s that defined the value of the visual feature: in the case of the line s = (ρ, θ) ;

• a set of 3D information that are necessary to compute the interaction matrix: in the case of the line
we have the 4 coefficients (A,B,C,D) of the plane to which the line belong (see Equation (1.8)) ;

• an interaction matrix Ls that describes how s is modified when the camera is moving with a velocity
v. In the case of the line it is defined by equation (1.12) ;
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• a method to compute the error s− s∗. In the case of the line we have:

s− s∗ =
[
ρ− ρ∗
θ − θ∗

]
where the value of θ − θ∗ is brought back in the interval [−π, π[ .

A minimal prototype for the vpFeatureLine class can be given by (complete prototype can be found
in the src/visual-features/vpFeatureLine.h file):

1 class vpFeatureLine : public vpBasicFeature {
2 private :
3 double A,B,C,D ;
4 public:
5 void setRhoTheta(const double rho,const double theta) {
6 vpBasicFeature::s[0] = rho ; vpBasicFeature::s[1] = theta ;
7 }
8 void setABCD(const double A,const double B,const double C,const double D) {
9 this->A = A ; this->B = B ; this->C = C ; this->D = D ;

10 }
11 double getRho() const { return vpBasicFeature::s[0] ; }
12 double getTheta() const { return vpBasicFeature::s[1] ; }
13

14 public:
15 vpMatrix interaction() ;
16 vpColVector error(const vpBasicFeatures& s_star) ;
17 } ;
18

19 vpMatrix
20 vpFeatureLine::interaction() {
21 vpMatrix Ls;
22 Ls.resize(2,6);
23

24 double rho = s[0];
25 double theta = s[1];
26

27 double co = cos(theta);
28 double si = sin(theta);
29

30 double lambda_theta = (A*si - B*co) /D;
31 double lambda_rho = (C + rho*A*co + rho*B*si)/D;
32

33 Ls[0][0] = co*lambda_rho; Ls[0][1] = si*lambda_rho; Ls[0][2] = -rho*lambda_rho; ... ;
34 Ls[1][0] = co*lambda_theta; Ls[1][1] = si*lambda_theta; Ls[1][2] = -rho*lambda_theta; ... ;
35 return Ls;
36 }
37

38 vpColVector
39 vpFeatureLine::error(const vpBasicFeatures& s_star) {
40 vpColVector e ;
41 e = s - s_star ;
42 // We brought back the theta error value in the interval [-Pi,Pi[
43 while (e[1] < -M_PI) e[1] += 2*M_PI ;
44 while (e[1] > M_PI) e[1] -= 2*M_PI ;
45 return e ;
46 }

1.2.3 Ellipse

We use a representation of the ellipse based on the normalized inertial moments p = (xc, yc, µ20, µ11, µ02).
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The interaction matrix related to the ellipse is given by:

LTxc
= [ −1/Zc 0 xc/Zc + aµ20 + bµ11

xcyc + µ11 −1− x2
c − µ20 yc ]

LTyc
= [ 0 −1/Zc yc/Zc + aµ11 + bµ02

1 + y2
c + µ02 −xcyc − µ11 −xc ]

LTµ20
= [ −2(aµ20 + bµ11) 0 2[(1/Zc + axc)µ20 + bxcµ11]

2(ycµ20 + xcµ11) −4µ20xc 2µ11 ]

LTµ11
= [ −aµ11 − bµ02 −aµ20 − bµ11 aycµ20 + (3/Zc − c)µ11 + bxcµ02

3ycµ11 + xcµ02 −ycµ20 − 3xcµ11 µ02 − µ20 ]

LTµ02
= [ 0 −2(aµ11 + bµ02) 2[(1/Zc + byc)µ02 + aycµ11]

4ycµ02 −2(ycµ11 + xcµ02) −2µ11 ]

(1.14)

where 1
Zc

= axc + byc + c is the equation of the plane to which the ellipse belong.

Ellipse as the projection of a circle. A circle may be represented as the intersection of a sphere and a
plane: {

(X −X0)2 + (Y − Y0)2 + (Z − Z0)2 −R2 = 0
α(X −X0) + β(Y − Y0) + γ(Z − Z0) = 0

(1.15)

The projection of a circle is an ellipse. The interaction matrix related to an ellipse has already been given.
Results are therefore given by Equation (1.14) with the particular following values for a, b and c:

a = α/(αX0 + βY0 + γZ0)
b = β/(αX0 + βY0 + γZ0)
c = γ/(αX0 + βY0 + γZ0)

(1.16)

Ellipse as the projection of a sphere. A sphere is represented by:

(X −X0)2 + (Y − Y0)2 + (Z − Z0)2 − r2 = 0 (1.17)

The projection of a sphere is an ellipse. The interaction matrix related to an ellipse has already been given.
Results are therefore given by Equation (1.14) with the particular following values for a, b and c:

a = X0/(X2
0 + Y 2

0 + Z2
0 −R2)

b = Y0/(X2
0 + Y 2

0 + Z2
0 −R2)

c = Z0/(X2
0 + Y 2

0 + Z2
0 −R2)

(1.18)

The ellipse is implemented in ViSP in the vpFeatureEllipse class.
We here present how this class is implemented in ViSP.
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vpFeatureEllipse implementation. As pointed out in section 1.1.1, a feature is defined by:

• a vector s that defined the value of the visual feature: in the case of the ellipse s =
(x, y, µ20, µ11, µ02) ;

• a set of 3D information that are necessary to compute the interaction matrix: in the case of the ellipse
we have the 3 coefficients (A,B,C) used in Equation (1.14) ;

• an interaction matrix Ls that describes how s is modified when the camera is moving with a velocity
v. In the case of the ellipse it is defined by equation (1.14) ;

• a method to compute the error s− s∗. In the case of the ellipse we have:

s− s∗ =


x− x∗
y − y∗

µ20 − µ20∗

µ11 − µ11∗

µ02 − µ02∗


A minimal prototype for the vpFeatureEllipse class can be given by (complete prototype can be

found in the src/visual-features/vpFeatureEllipse.h file):

1 class vpFeatureEllipse : public vpBasicFeature {
2 private :
3 double A,B,C ;
4 public:
5 void set_xy(const double x,const double y) {
6 vpBasicFeature::s[0] = x ; vpBasicFeature::s[1] = y ;
7 }
8 void setMu(const double mu20,const double mu11,const double mu02) {
9 vpBasicFeature::s[2] = mu20 ; vpBasicFeature::s[3] = mu11 ; vpBasicFeature::s[4] = mu02 ;

10 }
11 void setABC(const double A,const double B,const double C,const double D) {
12 this->A = A ; this->B = B ; this->C = C;
13 }
14 double get_x() const { return vpBasicFeature::s[0] ; }
15 double get_y() const { return vpBasicFeature::s[1] ; }
16 double getMu20() const { return vpBasicFeature::s[2] ; }
17 double getMu11() const { return vpBasicFeature::s[3] ; }
18 double getMu02() const { return vpBasicFeature::s[4] ; }
19

20 public:
21 vpMatrix interaction() ;
22 vpColVector error(const vpBasicFeatures& s_star) ;
23 } ;
24

25 vpMatrix
26 vpFeatureLine::interaction() {
27 vpMatrix Ls;
28 Ls.resize(5,6);
29

30 double xc = s[0] ;
31 double yc = s[1] ;
32 double mu20 = s[2] ;
33 double mu11 = s[3] ;
34 double mu02 = s[4] ;
35 double Z = 1/(A*xc + B*yc + C) ;
36

37 Ls[0][0] = -1/Z; Ls[0][1] = 0; Ls[0][2] = xc/Z + A*mu20 + B*mu11; ... ;
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38 Ls[1][0] = 0; Ls[1][1] = -1/Z; Ls[1][2] = yc/Z + A*mu11 + B*mu02; ... ;
39 Ls[2][0] = -2*(A*mu20+B*mu11); Ls[2][1] = 0 ; ... ;
40 Ls[3][0] = -A*mu11-B*mu02; Ls[3][1] = -A*mu20-B*mu11; ... ;
41 Ls[4][0] = 0; Ls[4][1] = -2*(A*mu11+B*mu02); ... ;
42 return Ls;
43 }
44

45 vpColVector
46 vpFeatureLine::error(const vpBasicFeatures& s_star) {
47 vpColVector e ;
48 e = s - s_star ;
49 return e ;
50 }

1.2.4 Vanishing points

Assuming a vanishing point which coordinates are given in the image x = (x, y), the interaction matrix is
similar to the point interaction with Z tends toward infinity and is given by [9]:

Lx =
[

0 0 0 xy −(1 + x2) y
0 0 0 1 + y2 −xy −x

]
(1.19)

The vanishing point is implemented in ViSP in the vpFeatureVanishingPoint class.
We present here how this class is implemented in ViSP.

vpFeatureVanishingPoint implementation. As pointed out in section 1.1.1, a feature is defined by:

• a vector s that defined the value of the visual feature: in the case of the vanishing point s = (x, y) ;

• a set of 3D information that are necessary to compute the interaction matrix: in the case of the
vanishing point we do not need 3D information ;

• an interaction matrix Ls that describes how s is modified when the camera is moving with a velocity
v. In the case of the vanishing point it is defined by equation (1.19) ;

• a method to compute the error s− s∗. In the case of the vanishing point we simply have:

s− s∗ =
[
x− x∗
y − y∗

]
A minimal prototype for the vpFeatureVanishingPoint class can be given by (complete prototype

can be found in the src/visual-features/vpFeatureVanishingPoint.h file):

1 class vpFeatureVanishingPoint : public vpBasicFeature {
2 public:
3 void set_x(const double x) { vpBasicFeature::s[0] = x ; }
4 void set_y(const double y) { vpBasicFeature::s[1] = y ; }
5 double get_x() const { return vpBasicFeature::s[0] ; }
6 double get_y() const { return vpBasicFeature::s[1] ; }
7

8 public:
9 vpMatrix interaction() ;

10 vpColVector error(const vpBasicFeatures& s_star) ;
11 } ;
12
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13 vpMatrix
14 vpFeatureVanishingPoint::interaction() {
15 vpMatrix Ls ;
16 Ls.resize(2,6) ;
17

18 double x = s[0];
19 double y = s[1];
20

21 Ls[0][0] = 0 ; Ls[0][1] = 0 ; Ls[0][2] = 0 ; Ls[0][3] = x*y ; ... ;
22 Ls[1][0] = 0 ; Ls[1][1] = 0 ; Ls[1][2] = 0 ; Ls[1][3] = 1+y*y ; ... ;
23 return Ls;
24 }
25

26 vpColVector
27 vpFeatureVanishingPoint::error(const vpBasicFeatures& s_star) {
28 vpColVector e ;
29 e = s - s_star ;
30 return e ;
31 }

1.2.5 Moments

This part covers the usage of moment-based visual features. It is strongly recommended to read ?? first.
Most of the features in visual servoing don’t have nice decoupling properties. In other words, the interaction
matrix associated to them is far from diagonal. Moment features can generate interaction matrices of the
following form: 

−1 0 0 xnwx xnwy xnwz

0 −1 0 ynwx ynwy ynwz

0 0 −1 anwx anwy 0
0 0 0 ciwx ciwy 0
0 0 0 cjwx cjwy 0
0 0 0 αwx αwy −1


Just like a vpFeaturePoint uses the vpPoint tracker, the vpFeatureMoment makes use of the

vpMoment primitives. These primitives are stored in a vpMomentDatabase, the same way it is described
in ??. Similarily, the vpFeatureMoment can access other interaction matrices (also stored in a database)
to combine them. Finally, the vpFeatureMoment outputs the interaction matrix associated with its feature.

The process is be summed up in Fig. 1.1.
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Figure 1.1: General scheme used to compute an interaction matrix from a moment primitives or other fea-
tures. Several vpFeatureMoments can be used to build a database of interaction matrices. Several moments
are also used to build a database of vpMoments. The vpFeatureMoment class uses those databases to com-
pute it’s corresponding interaction matrix.
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1.2.5.1 Moment features

All moment features share some common behaviours such as being interdependent, their configuration
with respect to the object’s planar orientation and more. Hence the existence of a parent class called
vpFeatureMoment which sums up as follows:

1 class vpFeatureMoment : public vpBasicFeature{
2 public:
3 vpFeatureMoment(vpMomentDatabase& moments,double A=0.0, double B=0.0, double C=0.0,
4 vpFeatureMomentDatabase* FeatureMoments=NULL)
5

6 //common implementation
7 vpBasicFeature* duplicate () const;
8 vpColVector error (const vpBasicFeature &s_star, unsigned int select=FEATURE_ALL) const;
9 int getDimension (unsigned int select=FEATURE_ALL) const;

10 void init ();
11 vpMatrix interaction (const unsigned int select=FEATURE_ALL);
12 void linkTo(vpFeatureMomentDatabase& featureMoments);
13

14

15 void update (double A, double B, double C);
16 virtual void compute_interaction ();
17 virtual const char* name() = 0;
18 virtual const char* momentName() = 0;
19

20 };

First, the vpFeatureMoment provides a common implementation for most of vpBasicFeature’s virtual
methods such as duplicate(), error(), getDimension(), etc.. The core methods of the moment
features are the following:

• update to specify the object’s position with respect to the camera. In fact, this is one parameter the
vpMomentObject does not define.

• compute_interaction to compute the interaction matrix after the object’s position is updated.

• name to specify the name in order to locate the vpFeatureMoment in the feature database.

• momentName to specify the name in order to locate the vpFeatureMoment in the moment database.

This summary reveals a few unknown themes which we will address in due time.

1.2.5.2 The object’s position

In ??, all the information is taken from the vpMomentObject class. That’s why the moments are updated
with that class. However, knowing the moment primitives alone is not sufficient to compute the interaction
matrix.

In fact, the interaction matrix also depends on the object’s position with respect to the camera. This
means that the user has to input the parameters of the plane containing the object. The plane parameters
requested are (A,B,C) with a plane equation of the following form:

1
Z

= Ax+By + C (1.20)

with:
x =

X

Z
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y =
Y

Z

(X,Y, Z) being the coordinates, in meters, of a point.
To properly compute an interaction matrix, we have to use the vpFeatureMoment::update()

method first. Here is an example of how to compute the interaction matrix associated to the
vpFeatureMomentBasic:

1 vpMomentDatabase mdb; //database for moment primitives. This will only contain the basic moment.
2 vpMomentBasic bm; //basic moment (this particular moment is nothing more than a shortcut to
3 //the vpMomentObject)
4 bm.linkTo(mdb); //add basic moment to moment database
5

6 vpFeatureMomentBasic fmb(mdb); //update and compute the vpMoment BEFORE doing any operations
7 //with vpFeatureMoment
8 bm.update(obj);
9 bm.compute();

10

11 fmb.update(0,0,1); //update the vpFeatureMoment with a plane configuration
12 std::cout << fmb.interaction(1,1) << std::endl;

First, note that vpMoment classes and vpFeatureMoment classes come in pairs. In fact, the
vpFeatureMoment needs moment primitives to implement the vpBasicFeature::get_s() method.
That’s why we set vpMomentBasic as a dependency of vpFeatureMomentBasic in database mdb passed
to the constructor.

After the vpFeatureMomentBasic is constructed, we update() and compute() the moment prim-
itive vpMomentBasic. Then, the object’s spatial orientation must be updated and the interaction matrix
computed (all in the fmb.update(0,0,1) call). A = 0, B = 0, C = 1 defines an object positioned
parallel to the camera plane at 1 meter depth.

1.2.5.3 Common moment features

Before examining the dependencies, let’s take a look at some common interaction matrices. These inter-
action matrices are programmed into specialized vpFeatureMoment classes. Their name is of the form
vpFeatureMoment moment-name and corresponds to the vpMoment moment-name moment primitive.
The mathematical expressions of these interaction matrices may be found in the doxygen documentation
and in [12]. Knowing the exact expression of interaction matrices is not critically important. However, it is
important to know the order of moments constituing the expression. By knowing this order, the user will be
able to initialize the vpMomentObject to the right order. A too low object order won’t allow the system
to compute the interaction matrices correctly. Sometimes, we don’t need the whole interaction matrix cor-
responding to a moment primitive. Therefore, the specialized vpFeatureMoment classes provide various
selectors to select only the rows we need. These interaction matrices are given by the following classes:

• vpFeatureMomentBasic computes the interaction matrix for the vpMomentBasic class. A short-
cut method vpFeatureMomentBasic::interaction(i,j) allows to select Lmij more easily.

• vpFeatureMomentCentered computes the interaction matrix for the vpMomentCentered class.
The same shortcut method vpFeatureMomentCentered::interaction(i,j) helps selecting
Lµij .

• vpFeatureMomentGravityCenterNormalized computes the interac-
tion matrix for the vpMomentCenterNormalized class. It pro-
vides vpFeatureMomentGravityCenterNormalized::selectXn() and
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vpFeatureMomentGravityCenterNormalized::selectYn() selectors. These selectors
are used inside the interaction() method: interaction(selectXn() | selectYn())

or simply interaction() for selecting both features, interaction(selectXn()) or
interaction(selectYn()) for selecting one of them. The minimum required moment
order is 2.

• vpFeatureMomentAreaNormalized computes the interaction matrix for the
vpMomentAreaNormalized class. There is no selection needed. The minimum required
moment order is 1 for dense objects (image or polygon) but 3 for discrete objects (set of points).

• vpFeatureMomentCInvariant computes the interaction matrix for the vpMomentCInvariant

class. There are several selection methods, one for each invariant. They go from selectC1() to
selectC10(). Moreover there are selectors selectSx(), selectSy() for symmetric invariants.
The minimum required moment order is 6.

• vpFeatureMomentAlpha computes the interaction matrix for the vpMomentAlpha class. There are
no selectors. The minimum required moment order is 3.

The orders are summed up again in the following table:

feature class minimal object order
dense object discrete object

vpMomentBasic variable variable
vpMomentCentered variable variable

vpMomentGravityCenter 2 3
vpMomentGravityCenterNormalized 2 3

vpMomentAreaNormalized 1 3
vpMomentCInvariant 6 6

vpMomentAlpha 4 4

Table 1.2: Minimal order required to construct a vpMomentObject(order) object used to compute
vpFeatureMoment... classes. Values are different if the object is dense (case of a polygon or an im-
age) or discrete (case of a set of points).

In moment based visual servoing as described in [12], only the 4 last ones are directly used.

1.2.5.4 Dependencies and databases

Just like moment primitives, interaction matrices are interdependent and so are vpFeatureMoment classes.
They are also dependent on moment primitives. Fig. 1.2 shows the dependencies for the vpFeatureMoment
classes.

Just like moment primitives, feature dependencies are handled through a database. The
vpFeatureMomentDatabase has a similar behaviour to vpMomentDatabase introduced in sec-
tion ??. vpFeatureMoments are added through the vpFeatureMoment::linkTo() method and ac-
cessed by name through the vpFeatureMomentDatabase::get() method. Moreover, just like the
database of moment primitives has a pre-filled database, there exists a pre-filled database of common
vpFeatureMoments. This database is called vpFeatureMomentCommon. It contains all common
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Figure 1.2: Dependencies between features and moments. Dependencies between moment primitives are
not shown here but are given in Fig. ??. vpMomentFeatures are shown in red.
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vpFeatureMoments used in visual servoing to compute the interaction matrices described in [12] and
their dependencies (showed in red in Fig. 1.1). Just like the vpMomentCommon database, this one provides
the vpFeatureMomentCommon::updateAll(A,B,C) method which updates all vpFeatureMoments
with the new object orientation and computes the interaction matrices for each feature. And just like
vpMomentCommon, the feature database needs additional data to make it work. In this case, the data is
less complicated. Here is the vpFeatureMomentCommon constructor:

1 vpFeatureMomentCommon(vpMomentDatabase& moments,double A=0.0,double B=0.0,double C=1.0)

Only the mandatory parameter moments, describing the database of moment primitives must be provided.
This way, vpFeatureMomentCommon will have access to the moment dependencies.

Moreover, the feature database provides shortcuts to access its elements through the
vpFeatureMomentCommon::get() method. These shortcuts are:

• getFeatureAlpha() returning the vpFeatureMomentAlpha.

• getFeatureAn() returning the vpFeatureMomentAreaNormalized.

• getFeatureCInvariant() returning the vpFeatureMomentCInvariant.

• getFeatureGravityNormalized() returning the vpFeatureMomentGravityCenterNormalized.

After this overview of ViSP’s moment features, the goal of this tutorial will be presented: a complete
visual servoing task.

1.2.5.5 Full visual servoing example

Creating a visual servoing task from scratch uses every notion learned in 1.2.5 and in moment primitives
presented in ??. In this part, we will work with two camera acquisitions: a source object and a destination
object. In the end, we want to have the result of visual servoing: the velocity vector reducing the error
between the two aquisitions. When repeated, this process will align the initial object with the destination
one. The process could be summed up as in Fig. 1.3.

First of all, let’s list the useful includes by following the process in the diagram:

1 #include <iostream> //some console output
2 #include <visp/vpPoint.h> //the basic tracker
3

4 #include <vector> //store the polygon
5 #include <visp/vpMomentObject.h> //transmit the polygon to the object
6 #include <visp/vpMomentCommon.h> //update the common database with the object
7 #include <visp/vpFeatureMomentCommon.h> //init the feature database using the information about moment dependencies
8 #include <visp/vpServo.h> //visual servoing task

To compute a velocity using visual servoing, we must at least have a source and a destination object.
Let’s describe them as polygons stored in a std::vector. In our example, the destination polygon will
only be the translated version of the source one:
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Figure 1.3: Visual servoing process with moments.



22 CHAPTER 1. VISUAL FEATURES

1 int main()
2 {
3 // Define source polygon
4 vpPoint p;
5 std::vector<vpPoint> vec_p_s,vec_p_d; // vectors that contain the vertices of the contour polygon
6

7 p.set_x(-0.2); p.set_y(0.1); // coordinates in meters in the image plane (vertex 1)
8 vec_p_s.push_back(p);
9 p.set_x(+0.3); p.set_y(0.1); // coordinates in meters in the image plane (vertex 2)

10 vec_p_s.push_back(p);
11 p.set_x(+0.2); p.set_y(-0.1); // coordinates in meters in the image plane (vertex 3)
12 vec_p_s.push_back(p);
13 p.set_x(-0.2); p.set_y(-0.15); // coordinates in meters in the image plane (vertex 4)
14 vec_p_s.push_back(p);
15 p.set_x(-0.2); p.set_y(0.1); // close the contour (vertex 5 = vertex 1)
16 vec_p_s.push_back(p);
17

18 //Define destination polygon. This is the source polygon translated of 0.1 on x-axis
19 p.set_x(-0.1); p.set_y(0.1); // coordinates in meters in the image plane (vertex 1)
20 vec_p_d.push_back(p);
21 p.set_x(+0.4); p.set_y(0.1); // coordinates in meters in the image plane (vertex 2)
22 vec_p_d.push_back(p);
23 p.set_x(+0.3); p.set_y(-0.1); // coordinates in meters in the image plane (vertex 3)
24 vec_p_d.push_back(p);
25 p.set_x(-0.1); p.set_y(-0.15); // coordinates in meters in the image plane (vertex 4)
26 vec_p_d.push_back(p);
27 p.set_x(-0.1); p.set_y(0.1); // close the contour (vertex 5 = vertex 1)
28 vec_p_d.push_back(p);

Once the vectors are filled up, objects need to be defined. The main question now is: what order should be
used to initialize it? Since the vpFeatureMomentCommon contains vpFeatureMomentCInvariant, the
answer is: at least 6 (see Table 1.2).

1 vpMomentObject src(6); // Create a source moment object with 6 as maximum order
2 src.setType(vpMomentObject::DENSE_POLYGON); // The object is defined by a countour polygon
3 src.fromVector(vec_p_s); // Init the dense object with the source polygon
4

5 vpMomentObject dst(6); // Create a destination moment object with 6 as maximum order
6 dst.setType(vpMomentObject::DENSE_POLYGON); // The dense object is defined by a countour polygon
7 dst.fromVector(vec_p_d); // Init the dense object with the destination polygon

Now we need to set up common databases for moment primitives. One for the source object and one for
destination. Some reference values for the alpha moment will be needed. Once this is done, we can set up
databases for moment features and provide them with the vpMomentCommon databases.

1 //init classic moment primitives (for source)
2 vpMomentCommon mdb_src(vpMomentCommon::getSurface(dst),vpMomentCommon::getMu3(dst),
3 vpMomentCommon::getAlpha(dst),1.);
4 //Init classic features
5 vpFeatureMomentCommon fmdb_src(mdb_src);
6

7 ////init classic moment primitives (for destination)
8 vpMomentCommon mdb_dst(vpMomentCommon::getSurface(dst),vpMomentCommon::getMu3(dst),
9 vpMomentCommon::getAlpha(dst),1.);

10 //Init classic features
11 vpFeatureMomentCommon fmdb_dst(mdb_dst);

All databases (moment and feature) are now initialized. We need to update them. First, the moment
database is updated with the vpMomentObject. Then, the feature database is updated with the object’s
orientation in space. In our example, the object is only translated along the X axis. Therefore it stays on the
same plane and the A,B,C parameters stay the same. The process is done for both source and destination.
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1 //update+compute moment primitives from object (for source)
2 mdb_src.updateAll(src);
3 //update+compute features (+interaction matrixes) from plane
4 fmdb_src.updateAll(0.,0.,1.);
5

6 //update+compute moment primitives from object (for destination)
7 mdb_dst.updateAll(dst);
8 //update+compute features (+interaction matrixes) from plane
9 fmdb_dst.updateAll(0.,0.,1.);

At this point, the visual features are ready for both objects. The next step is to set up the visual servoing
task. An eye-in-hand configuration will be used and the interaction matrix for the current object will be
computed. The static gain is set to 1.

1 //define visual servoing task
2 vpServo task;
3 task.setServo(vpServo::EYEINHAND_CAMERA);
4 task.setInteractionMatrixType(vpServo::CURRENT);
5 task.setLambda(1) ;

The task is initialized but we still need to add the visual features to it. To do that efficiently, we will use
out get...() shortcuts. To provide ViSP with the information about which rows to select, the selectors
must be used. All rows for the vpFeatureMomentGravityCenter, will be used. No selection is needed
in this case. Since the object is not symmetric, ci invariants is a good choice, for example c4 and c6 [12].

1 task.addFeature(fmdb_src.getFeatureGravityNormalized(),fmdb_dst.getFeatureGravityNormalized());
2 task.addFeature(fmdb_src.getFeatureAn(),fmdb_dst.getFeatureAn());
3 //the object is NOT symmetric
4 //select C4 and C6
5 task.addFeature(fmdb_src.getFeatureCInvariant(),fmdb_dst.getFeatureCInvariant(),
6 vpFeatureMomentCInvariant::selectC4() | vpFeatureMomentCInvariant::selectC6());
7 task.addFeature(fmdb_src.getFeatureAlpha(),fmdb_dst.getFeatureAlpha());

The visual servoing task is now ready. The last step will display the computed velocity. This last step
can be repeted in a loop until the task reaches convergence. A complete example of this is available in ViSP
in the file manServoMomentsSimple.cpp.

1 vpColVector v = task.computeControlLaw();
2 std::cout << v << std::endl;

1.3 3D visual features

Assuming that the pose cMo between the object frame Fc and the camera frame Fo is known, it is also
possible to consider 3D visual features.

1.3.1 Interaction matrix related to a 3-D point

Using the fundamental kinematics equation given in (1.3), we immediately get for any point with coordinates
X related to the object:

LX =
[ −I3 [X]×

]
(1.21)

The point3D is implemented in ViSP in the vpFeaturePoint3D class.
We present here how this class is implemented in ViSP.
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vpFeaturePoint3D implementation. As pointed out in section 1.1.1, a feature is defined by:

• a vector s that defines the value of the visual feature: in the case of the point 3D s = (x, y, z) ;

• an interaction matrix Ls that describes how s is modified when the camera is moving with a velocity
v. In the case of the point 3D it is defined by equation (1.21) ;

• a method to compute the error s− s∗. In the case of the point 3D we simply have:

s− s∗ =

 x− x∗
y − y∗
z − z∗


A minimal prototype for the vpFeaturePoint3D class can be given by (complete prototype can be

found in the src/visual-features/vpFeaturePoint3D.h file):
1 class vpFeaturePoint3D : public vpBasicFeature {
2 public:
3 void set_X(const double X) { vpBasicFeature::s[0] = X ; }
4 void set_Y(const double Y) { vpBasicFeature::s[1] = Y ; }
5 void set_Z(const double Z) { vpBasicFeature::s[2] = Z ; }
6 double get_X() const { return vpBasicFeature::s[0] ; }
7 double get_Y() const { return vpBasicFeature::s[1] ; }
8 double get_Z() const { return vpBasicFeature::s[2] ; }
9

10 public:
11 vpMatrix interaction() ;
12 vpColVector error(const vpBasicFeatures& s_star) ;
13 } ;
14

15 vpMatrix
16 vpFeaturePoint3D::interaction() {
17 vpMatrix Ls ;
18 Ls.resize(3,6) ;
19

20 Ls[0][0] = -1 ; Ls[0][1] = 0 ; Ls[0][2] = 0 ; Ls[0][3] = 0 ; Ls[0][4] = -Z ; Ls[0][5] = Y ;
21 Ls[1][0] = 0 ; Ls[1][1] = -1 ; Ls[1][2] = 0 ; Ls[1][3] = Z ; Ls[1][4] = 0 ; Ls[1][5] = -X ;
22 Ls[2][0] = 0 ; Ls[2][1] = 0 ; Ls[2][2] = -1 ; Ls[2][3] = -Y ; Ls[2][4] = X ; Ls[2][5] = 0 ;
23 return Ls;
24 }
25

26 vpColVector
27 vpFeaturePoint3D::error(const vpBasicFeatures& s_star) {
28 vpColVector e ;
29 e = s - s_star ;
30 return e ;
31 }

The points taken into account can be characteristic points of the object [8, 11], or also the origin of Ro
(we then have X = cto).

1.3.2 Interaction matrix related to a translation

Thus, with an eye-in-hand camera, if we are interested in the translation t the camera must achieve, we can
consider:

• t relative to the desired camera frame Fc∗ . We then have s = ctc∗ and s∗ = 0 [7]. In that case we get:

Lctc∗ =
[ −I3 [ctc∗ ]×

]
(1.22)
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• t relative to the current camera frame Fc. we then have s = c∗tc and s∗ = 0. In that case we get:

Lc∗tc
=
[
c∗Rc 03

]
(1.23)

• t relative to the frame Fo attached to the object [13]. We then have s = cto and s∗ = c∗to (see
figure 1.4). In that case we get:

Lcto =
[ −I3 [cto]×

]
(1.24)

c∗tc (or ctc∗)

Fo

Xcto

Fc

Fc∗

Figure 1.4: Possible 3-D translations considered as visual features in ViSP with a eye-in-hand camera.

The feature translation is implemented in ViSP in the vpFeatureTranslation class.
We present here how this class is implemented in ViSP.

vpFeatureTranslation implementation. As pointed out in section 1.1.1, a feature is defined by:

• a vector s that defines the value of the visual feature: in the case of the translation s = (tx, ty, tz) ;

• an interaction matrix Ls that describes how s is modified when the camera is moving with a velocity
v. In the case of the point 3D it is defined by equation (??) ;

• a method to compute the error s − s∗. In the case of the translation we compute the error only for
s∗ = 0. In that case the error is equal to s.

A minimal prototype for the vpFeatureTranslation class can be given by (complete prototype can
be found in the src/visual-features/vpFeatureTranslation.h file):

1 class vpFeatureTranslation : public vpBasicFeature {
2 public:
3 typedef enum {

4 cdMc, // consider the case where s =c∗ tc and s∗ = 0
5 cMcd, // consider the case where s =c tc∗ and s∗ = 0

6 cMo // consider the case where s =c to and s∗ =c∗ to
7 } vpFeatureTranslationRepresentationType;
8

9 protected :
10 vpHomogeneousMatrix M ;
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11 vpFeatureTranslationRepresentationType type;
12

13 public:
14 vpFeatureTranslation::vpFeatureTranslation(vpFeatureTranslationRepresentationType type)
15 : vpBasicFeature() {
16 this ->type = type;
17 }
18 void builFrom(const vpHomogeneousMatrix &M) {
19 this->M = M; // set especially the rotation matrix
20 vpBasicFeature::s[0] = M[0][3] ; // set tx
21 vpBasicFeature::s[1] = M[1][3] ; // set ty
22 vpBasicFeature::s[2] = M[2][3] ; // set tz
23 }
24 void set_Tx(const double tx) { vpBasicFeature::s[0] = tx ; }
25 void set_Ty(const double ty) { vpBasicFeature::s[1] = ty ; }
26 void set_Tz(const double tz) { vpBasicFeature::s[2] = tz ; }
27 double get_Tx() const { return vpBasicFeature::s[0] ; }
28 double get_Ty() const { return vpBasicFeature::s[1] ; }
29 double get_Tz() const { return vpBasicFeature::s[2] ; }
30

31 vpMatrix interaction() ;
32 vpColVector error(const vpBasicFeatures& s_star) ;
33 } ;
34

35 vpMatrix
36 vpFeatureTranslation::interaction() {
37 vpMatrix Ls ;
38 Ls.resize(3,6) ;
39

40 if (type == cdMc) {
41 for (int i=0 ; i < 3 ; i++) {
42 for (int j=0 ; j < 3 ; j++) {
43 Ls[i][j] = M[i][j] ;
44 Ls[i][j+3] = 0 ;
45 }
46 }
47 }
48 else if (type == cMcd || type == cMo) {
49 Ls[0][0] = -1; Ls[0][1] = 0; Ls[0][2] = 0; Ls[0][3] = 0; Ls[0][4] = -s[2]; Ls[0][5] = s[1];
50 Ls[1][0] = 0; Ls[1][1] = -1; Ls[1][2] = 0; Ls[1][3] = s[2]; Ls[1][4] = 0; Ls[1][5] = -s[0];
51 Ls[2][0] = 0; Ls[2][1] = 0; Ls[2][2] = -1; Ls[2][3] = -s[1]; Ls[2][4] = s[0]; Ls[2][5] = 0;
52 }
53

54 return Ls;
55 }
56

57 vpColVector
58 vpFeatureTranslation::error(const vpBasicFeatures& s_star) {
59 if(type == cdMc || type == cMcd) {
60 if (s_star.get_s().sumSquare() > 1e-6) {
61 throw(vpFeatureException("s* should be zero !")) ;
62 }
63 }
64 vpColVector e ;
65 e = s - s_star ;
66 return e ;
67 }
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1.3.3 Interaction matrix related to θu

Remember, first of all, that the θu representation is obtained in a unique manner from the coefficients
rij(i = 1..3, j = 1..3) of a rotation matrix R using the following equation [4] :

θu =
1

2 sincθ

 r32 − r23

r13 − r31

r21 − r12

 (1.25)

where θ = arccos((r11+r22+r33−1)/2)) and where sincθ is the sinus cardinal such that sin θ = θ sincθ
and sinc0 = 1.

In the case of an eye-in-hand system, it is possible to use for visual servoing the vector θu to represent
the rotation c∗Rc between Rc∗ and Rc. If the matrices c

∗
Rn∗ and cRn are identical, which is usually the

case, we can also consider the vector θu associated with the rotation n∗Rn. Likewise, with a scene camera,
the vector θu can be used to represent either the rotation o∗Ro between the desired frame and the cur-
rent frame of the object connected to the effector, either the rotation n∗Rn if the matrices o

∗
Rn∗ and oRn

are identical (which is also usually the case). In all of the cases mentioned above, the interaction matrix
associated with θu is given by [6]:

Lθu =
[

03 Lω
]

(1.26)

with:

Lω = I3 +
θ

2
[u]× + (1− sincθ

sinc2 θ
2

) [u]2× (1.27)

The θu representation is therefore particularly interesting since Lω is singular only for θ = 2π. Further-
more, we have:

L−1
ω = I3 +

θ

2
sinc2 θ

2
[u]× + (1− sincθ)[u]2× (1.28)

which guarantees the following, rather convenient, property:

L−1
ω θu = θu (1.29)

If you would rather consider the rotations cRc∗ , nRn∗ or oRo∗ we immediately infer from (1.26) that:

Lθu =
[

03 Lω
]

(1.30)

with:

Lω = −I3 +
θ

2
[u]× − (1− sincθ

sinc2 θ
2

) [u]2× (1.31)

and we now have:
L−1
ω θu = −θu (1.32)

Note that it is not possible to directly take into account the vector θu associated to the rotation cRo and
to base the argument on the difference between θu and θ∗u∗ (where θ∗u∗ represents the desired rotation
c∗Ro). This is because θu− θ∗u∗ does not represent a rotation in the space SO3 of rotations [10].

The θu is implemented in ViSP in the vpFeatureThetaU class.
We present here how this class is implemented in ViSP.
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vpFeatureThetaU implementation. As pointed out in section 1.1.1, a feature is defined by:

• a vector s that defines the value of the visual feature. In the case of the θu, s = (θux, θuy, θuz) ;

• an interaction matrix Ls that describes how s is modified when the camera is moving with a velocity
v. In the case of the θu it is defined by equation (1.26) ;

• a method to compute the error s− s∗. In the case of the θu we compute the error only for s∗ = 0. In
that case the error is equal to s.

The prototype for the vpFeatureThetaU class can be found in the
src/visual-features/vpFeatureThetaU.h file.

1.4 Generic feature

It is obviously impossible to provide a class for each possible visual feature. Therefore we define a
vpGenericFeature class for which the user may define the size of s, the vector s itself, the interaction Ls

and if necessary the way to compute the error.
If we consider the case of the 2 1/2 visual servoing, as described in section 3.2, the vector s used to

defined this task is s = (x, y, logZ, θu). If (x, y) and θu are already defined, nothing has been done
dealing with log(Z/Z∗). We can then define a vpGenericFeature of size 1:

1 vpGenericFeature logZ(1) ; // log (Z/Z*)

It will then be possible to compute and update the interaction matrix at each iteration:

1 // compute log (Z/Z*), s_star is then equal to zero
2 logZ.set_s(log(Z/Zd)) ;
3

4 // and the corresponding interaction matrix
5 vpMatrix LlogZ(1,6) ;
6 LlogZ[0][0] = LlogZ[0][1] = LlogZ[0][5] = 0 ;
7 LlogZ[0][2] = -1/Z ;
8 LlogZ[0][3] = -p.get_y() ; // p is here a vpFeaturePoint
9 LlogZ[0][4] = p.get_x() ;

10 logZ.setInteractionMatrix(LlogZ) ;
11

12 // The error is here equal to s = log(Z/Z*)

The new defined vpGenericFeature can then be as any other visual feature. A full example that use this
capabiblity is given in section 3.2.
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Task and control laws

2.1 Create a task

One of the main issue in visual servoing is to set up the task. End-user has then to select a set of visual feature
that will define the task. Using these elementary visual features, more complex tasks can be considered by
stacking the elementary feature vectors.

The task is specified using the vpServo class (that is also used to define and compute the control law).
The main methods used to define the task are:

1 int vpServo::addFeature(vpBasicFeature &s, vpBasicFeature &sd) ;

where s will be regulated to sd and

1 int vpServo::addFeature(vpBasicFeature &s) ;

where s will be regulated to zero.
vpServo contains two lists of current and visual features (in fact a list of pointer to vpBasicFeature

elements) and each call to the addFeature method introduce new vpBasicFeature in both lists. These
lists define the task. Actually the user does not call directly addFeature with vpBasicFeature but with
the derived feature that have been defined. Let’s consider again the 2 1/2 D task mentioned in the previous
paragraph and illustrated in section 3.2. The task can be set up from the following code:

1 vpServo task ;
2

3 vpPoint p, pd ;
4 vpGenericFeature LogZ(1) ;
5 vpFeatureThetaU tu ;
6

7 <initialize p, pd, logZ, tu >
8

9 task.addFeature(p,pd) ;
10 task.addFeature(logZ) ;
11 task.addFeature(tu) ;

Let us note that in that case logZ and tu are to be regulated to zero. Dealing with tu which describe
the rotation c∗Rc that the camera has to achieved, it is even impossible to regulate it to another value than
zero. task.addFeature(tu,tud); will throw an exception (this is done for the vpFeatureThetaU

and vpFeatureTranslation visual feature).

vpServo
s
sd
s
vpServo
vpBasicFeature
addFeature
vpBasicFeature
addFeature
vpBasicFeature
logZ
tu
tu
task.addFeature(tu, tud) ;
vpFeatureThetaU
vpFeatureTranslation
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Feature selection. It can be of interest to select a subset of the visual feature defined in a derived basic
feature (for example, we may want to consider only the x coordinates of a point or the θuz component of
θu). The provided solution is a modified version of addFeature:

1 int vpServo::addFeature(vpBasicFeature &s, vpBasicFeature &sd, int select) ;

that can be used as follow. Let us consider another solution for a 2 1/2 D visual servoing task. Let s =
(t, x, y, θuz) be the vector of visual feature where t is the translation that the camera has to realize. Mainly
wrt. to the previous case, only the third component of θu has to be selected.

1 vpServo task ;
2

3 vpTranslationVector t ;
4 vpPoint p, pd ;
5 vpThetaU tu ;
6

7 <initialiaze p, pd, t, tu >
8

9 task.addFeature(t) ;
10 task.addFeature(p,pd) ;
11 task.addFeature(tu, vpThetaU::selectThetaUZ) ;

Note that more than one sub-features can be selected using logical operator. For example, if we want to
select the θux and θuz of the θu feature we wrote:

1 task.addFeature(tu, vpThetaU::selectThetaUX() | vpThetaU::selectThetaUZ()) ;

Here the bitwise logical operator | act as an union operator (this is not the classical logical operator ||) .

2.2 Control law

The control law is also handled by the vpServo class. A few members and methods are defined in order to
set up a specific control law. Let us first recall here the visual servoing control. The notations used hereby
will be also used in the implementation of the vpServo class.

From the previous definition, a general control is then computed using the following equations:

e = W+
q e1 + (I−W+

q Wq)e2 (2.1)

with
e1 = Wq

(
εL̂s

cVa
aJe
)+(s− s∗) (2.2)

where Wq is computed from J1 = Ls
cVa

aJe and where ε = 1 in the eye-in-hand case and −1 in the
eye-to-hand case.
Finally we get:

q̇ = −λe (2.3)

Note that from an implementation point of view, at the control law level, ViSP only manipulates matrices
and vectors. It has no knowledge of the underlying visual feature.

Twist transformations and Jacobians. It has then to be noted that, in this set of equations, whereas some
informations are defined by the task (e.g., Ls, s or s∗) or are computed automatically (e.g., Wq), some
matrices have to be defined by the programmer. These matrices are: cVa and aJe.

addFeature
|
||
vpServo
vpServo
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It is clear that only the end-user knows in which frame his robot jacobian is expressed, the value of
the camera-effector transformation (in the eye-in-hand case) or with respect to which frame the pose is
computed in the eye-to-hand case. Therefore we have defined some methods (in the vpServo class) that
allows to set these matrices. When computing the control law, the program will test if the matrices are
indeed initialized and updated (if required). Table 2.1 summarizes the matrices twist transformations and
jacobians that have to be initialized (I) or updated at each iteration of the control loop (U) depending of the
chosen method. Note that, in the eye-to-hand case, when the camera is mobile, cVF must also be updated.

cVe
cVF FVe

eJe FJe
eye-in-hand ṡ = Ls v

ṡ = Ls
cVe

eJe q̇ I U
ṡ = −Ls v
ṡ = −Ls

cVe
eJe q̇ U U

eye-to-hand ṡ = −Ls
cVF FVe

eJeq̇ I (or U) U U
ṡ = −Ls

cVF FJe q̇ I (or U) U

Table 2.1: Twist transformations and jacobians that have to be initialized (I) or updated in the control loop
(U) depending of the chosen method. cVF relates to the twist transformation matrix from camera frame Fc
to the robot reference frame FF .

The method defined to initialize or update these matrices are for the jacobians:

1 vpServo::set_eJe(vpMatrix &eJe)
2 vpServo::set_fJe(vpMatrix &fJe)

and for the twist transformation matrices:

1 vpServo::set_cVe(vpVelocityTwistMatrix &cVe)
2 vpServo::set_cVf(vpVelocityTwistMatrix &cVf)
3 vpServo::set_fVe(vpVelocityTwistMatrix &fVe)

Since twist transformation matrices are computed from pose we also provide these more convenient inter-
faces:

1 vpServo::set_cVe(vpHomogeneousMatrix &cMe)
2 vpServo::set_cVf(vpHomogeneousMatrix &cMf)
3 vpServo::set_fVe(vpHomogeneousMatrix &fMe)

Choice of the control law. The choice of the control law is automatically done with respect to the initial-
ized matrices. When more than one choice is possible (it should not be) a warning is printed on stderr.
An error is sent if, when computing the control law, one of these matrices is not initialized (that is when
no choice is possible). However it is better to select explicitely the type of desired control law using the
vpServo::setServo api.

1 vpServo::setServo(vpServo::vpServoType servoType)

with

1 class vpServo
2 {
3 ...
4 public:
5 typedef enum

stderr
vpServo::setServo
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6 {
7 NONE,
8 EYEINHAND_CAMERA, // consider the case where ṡ = Ls v
9 EYEINHAND_L_cVe_eJe, // consider the case where ṡ = Ls

cVe
eJe q̇

10 EYETOHAND_L_cVe_eJe, // consider the case where ṡ = −Ls
cVe

eJe q̇
11 EYETOHAND_L_cVf_fVe_eJe,// consider the case where ṡ = −Ls

cVF
FVe

eJeq̇
12 EYETOHAND_L_cVf_fJe // consider the case where ṡ = −Ls

cVF
FJe q̇

13 } vpServoType;
14 ...
15 };

Listing 2.1: Control law selector.

A flag is positioned when the matrix is initialized or updated. It is modified when the articular velocity
is sent to robot controller. If the twist or jacobian matrices are not updated (they should be updated) prior to
a new computation of the control law, a warning is printed on stderr.

An error is sent when the size of the jacobian is not compatible with the number of degrees of freedom
available on the robot (a good solution to avoid this error is to read the jacobian from the vpRobot class...)

Example. The following listing is a piece of code showing how an eye-to-hand task can be implemented.
The chosen control law is given by ṡ = −Ls

cVF FJeq̇. Therefore the camera location wrt. the robot
reference frame cMF has to be known (but has not to be updated if the camera is motionless). An other
requirement is that the jacobian of the robot expressed in the robot reference frame has also to be known
(robot.get_fJe(fJe)) . If such jacobian is not available then vpRobot::get_fJe(vpMatrix
&fJe) should return an error (this is very important to consider such case when you write the vpMyRobot
class).

1 vpMyRobot robot ;
2 vpServo task ;
3

4 ...
5

6 task.setServo(vpServo::EYETOHAND_L_cVf_fJe) ;
7 // cMf is the position of the camera wrt. robot reference frame
8 task.set_cVf(cMf) ;
9 task.setLambda(0.2) ; // value of the constant control gain λ

10

11 while(...) {
12 vpColVector dotq(6) ; // velocity vector
13

14 ... // everything useful to update the visual feature
15

16 vpMatrix fJe ;
17 robot.get_fJe(fJe) ;
18 task.set_fJe(fJe) ;
19

20 dotq = task.computeControlLaw() ;
21

22 robot.setVelocity(dotq, vpRobot::ARTICULAR_FRAME) ;
23 }

Listing 2.2: Typical code for the visual servoing closed loop.

Interaction matrix. In (2.2) L̂s is a model or an approximation of the interaction matrix. ViSP allows to
consider various possibilities [1]:

stderr
vpRobot
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• L̂s = L̂s(s,p) where the interaction matrix is computed at the current position of the visual feature
and the current 3D pose (denoted p),

• L̂s = L̂s(s∗,p∗) where the interaction matrix is computed only once at the desired position of s and
p,

• L̂s = 1
2

(
L̂s(s,p) + L̂s(s∗,p∗)

)
[5] .

The choice is done using the following method:

1 void vpServo::setInteractionMatrixType(vpServo::vpInteractionMatrixType type) ;

with:

1 typedef enum
2 {

3 CURRENT, // interaction matrix computed at current position cLs = cLs(s,p)

4 DESIRED, // interaction matrix computed at desired position cLs = cLs(s∗,p∗)

5 MEAN, // interaction matrix computed as cLs = 1
2

`cLs(s,p) + cLs(s∗,p∗)
´

6 USER_DEFINED // user defined interaction matrix
7 } vpInteractionMatrixType;

Listing 2.3: Interaction matrices selector.

vpServo::setInteractionMatrixType only set up a flag that will be used by the vpServo::

computeControlLaw() or vpServo::computeInteractionMatrix() method. It is of the program-
mer responsibility to ensure that s or s∗ are properly initialized prior to the interaction matrix computation
(this includes 2D and, if necessary, 3D informations). The following listing shows how to use this function
in the code.

1 vpServo task ;
2 task.setInteractionMatrixType(vpServo::CURRENT)
3

4 while(...) {
5 ...
6 dotq = task.computeControlLaw() ;
7 ...
8 }

Another control law is possible using the transpose of the interaction matrix and no longer its pseudo
inverse (though it is not recommended at all, behavior is really bad!)

e1 = Wq

(
εL̂s

cVa
aJe
)>(s− s∗) (2.4)

this capability can be activated using

1 task.setInteractionMatrixType(vpServo::DESIRED, vpServo::TRANSPOSE) ;

or

1 task.setInteractionMatrixType(vpServo::CURRENT, vpServo::TRANSPOSE) ;

vpServo::setInteractionMatrixType
vpServo:: computeControlLaw()
vpServo:: computeControlLaw()
vpServo::computeInteractionMatrix()
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Chapter 3

Complete visual servoing experiments

We will describe the software environment from the end-user point of view, in the light of two simple
examples implemented using ViSP.

3.1 Building a basic 2D visual servoing task

Listing 3.1 defines a typical initialization process that can be used in most programs using ViSP. These lines
define the framegrabber (here for a firewire camera), the display system (here X11R6), a robot (the 6 d.o.f
Afma gantry robot of INRIA), a camera (with given calibration parameters) and finally create a task.

1 vpImage<unsigned char> I ;
2 // use the 1394 framegraber coming with libdc1394-2.x
3 vp1394TwoGrabber grabber ;
4 // associate the grabber to the image
5 grabber.open(I) ;
6 grabber.acquire(I) ;
7

8 // use the X11R6 window system to display the image
9 // associate the display to the image

10 vpDisplayX display(I,"a new X11 window") ;
11 // display the image
12 vpDisplay::display(I) ;
13

14 // use the Afma6 robot
15 vpRobotAfma6 robot ;
16 // define camera calibration parameters
17

18 // define some camera parameters
19 vpCameraParameters cam(u0,v0,px,py) ;
20 // create a new task
21

22 vpServo task ;
23 < code for a specific experiment >

Listing 3.1: Typical code for ViSP initialization.

Once these initializations have been achieved, the user is ready to define the tracker of the visual cues and
the visual servoing task. In this first example we choose the classical positioning task wrt. four points.
Dealing with the tracking process, in this example we choose to track fiducial markers (vpDot2) . The
features (vpFeaturePoint) are created from the tracked markers (vpDot2) using member functions of
the vpFeatureBuilder class (in this simple case, it mainly achieves a pixel-to-meter conversion). The
desired positions of the visual feature s∗ is also defined and a link between the current position (s[i]) of the

vpDot2
vpFeaturePoint
vpDot2
vpFeatureBuilder
s[i]
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visual feature in the image and the desired position (sd[i]) is then created. Each call to the addFeature
method creates a 2 × 6 interaction matrix which is “stacked” to the current one. At the end of this process
a 8 × 6 matrix and the corresponding error vector is then created. Line 19 specifies that we consider an
eye-in-hand configuration with velocity computed in the camera frame. Furthermore, the interaction matrix
will be computed at the desired position L̂s = L̂s(s∗, r∗) (line 20) and the control law will computed using
the pseudo-inverse of the interaction matrix (other possibilities such as considering the transpose of Ls also
exist).

1 vpDot2 dot[4] ; // tracked objects
2 vpFeaturePoint s[4], sd[4] ; // current and desired feature (4 points)
3 for (i=0; i<4; i++)
4 {
5 dot[i].initTracking(I) ; // initialize the tracking process
6

7 // build current visual features from the tracked objects
8 vpFeatureBuilder::create(s[i],cam, dot[i]) ;
9

10 // Init here the desired visual features s∗ along with
11 // the 3D information required to compute the interaction matrix
12 sd[i].buildFrom(x[i],y[i],Z[i]) ;
13

14 // add point-to-point image constraint
15 // defines the list of visual features, the error vector
16 // as well as the interaction matrix
17 task.addFeature(s[i],sd[i]) ;
18 }
19 task.setServo(vpServo::EYEINHAND_CAMERA) ;
20 task.setInteractionMatrixType(vpServo::DESIRED, vpServo::PSEUDO_INVERSE);

Listing 3.2: An example of task definition: positioning wrt. four points.

It is then straightforward to write the loop itself. It features the image acquisition (line 4), the image
processing to extract the new position of the dots (line 8) and the value of the visual feature s is recomputed
(line 10). The task is automatically updated and the control law v = −λL+

s|s=s∗(s − s∗) is computed
(line 13). Finally the result is sent to the robot controller.

1 task.setLambda(0.2) ; // set the gain λ
2 while(...) {
3 vpColVector v(6) ; // velocity vector
4 grabber.acquire(I) ; // acquire a new image
5 for (i=0 ; i < 4 ; i++)
6 {
7 // perform the feature tracking
8 dot[i].track(I) ;
9 // and the pixel/meter conversion

10 vpFeatureBuilder::create(s[i],cam, dot[i]);
11 }
12

13 v = task.computeControlLaw() ; // v = −λL+
s (s− s∗)

14

15 // send the computed velocity (expressed in the camera frame)
16 // to the robot controller
17 robot.setVelocity(vpRobot::CAMERA_FRAME, v) ;
18 }

Listing 3.3: Typical code for the visual servoing closed loop.

A complete example named servoAfma6FourPoints2DCamVelocityInteractionDesired.cpp
can be found in ViSP source tree.

sd[i]
addFeature
servoAfma6FourPoints2DCamVelocityInteractionDesired.cpp
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3.2 Building a 2 1/2 D visual servoing task

If we now consider the case of a 2 1/2 D visual servoing task, the visual features s are defined by s =
(x, y, logZ, θu) (see Figure 3.1) . Therefore, to achieve this task we need to know the 3D position of the
point and the camera pose wrt. to the scene. Listing 3.4 shows how to get the pose cMo from a set of five
points. The class vpPose provides function that compute the pose from a list of points (list built using the
addPoint method). Different methods can be considered to compute the pose. In this example, it is first
initialized using the Dementhon-Davis [2] approach and improved using a non-linear minimization method
using virtual visual servoing approach.

a b c

Figure 3.1: 2 1/2 D visual servoing task as implemented in section 3.2

1 vpDot2 dot[7] ; // Create 7 dot trackers
2 vpPoint point[7] ; // Create 7 point visual features
3

4 // init the 3D coordinates (X,Y,Z) of the points,
5 // our 5 points are planar, that’s why the Z coordinate is null.
6 double L = 0.06;
7 point[0].setWorldCoordinates(-L,L,0) ;
8 point[1].setWorldCoordinates(L,-L,0) ;
9 point[2].setWorldCoordinates(L,L,0) ;

10 point[3].setWorldCoordinates(-L,L,0) ;
11 point[4].setWorldCoordinates(2*L,3*L,0) ;
12 point[5].setWorldCoordinates(0,3*L,0) ;
13 point[6].setWorldCoordinates(-2*L,3*L,0) ;
14

15 vpPose pose ;
16 for (i=0; i<7; i++)
17 {
18 // initialize the tracking process
19 dot[i].initTracking(I, cam) ;
20 // get the 2D position of the point in meter
21 dot[i].track(I) ;
22

23 // pixel-to-meter conversion
24 vpPixelMeterConversion::convertPoint(cam, dot[i], point[i]) ;
25 // here the 2D coordinates (x,y) and 3D coordinates (X,Y,Z) of the point are available
26

27 // consider this point in the pose computation algorithm
28 pose.addPoint(point[i]) ;
29 }
30 vpHomogeneousMatrix cMo ;
31 pose.computePose(vpPose::DEMENTHON, cMo) ;
32 pose.computePose(vpPose::VIRTUAL_VS, cMo) ;
33

34 cout << "Pose" << cMo << endl ;

Listing 3.4: An example of task definition: positioning wrt. seven points.

vpPose
addPoint
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Listing 3.5 shows how to build a 2 1/2 D visual servoing control law. In a first time, we initialized the
current and desired value of the visual features. The basic features related to a point and to θu are available
in the visual feature library (vpFeaturePoint and vpFeatureThetaU) . However there is no predefined
basic feature for logZ. In such case it is possible to use a generic vpGenericFeature feature. The user
has then to define, at each iteration, the state vector, the interaction matrix, and the error vector. The task is
then built by “stacking” the different visual features using the addFeature method. Let us note that when
dealing with logZ and tu the desired position is not defined. Since these features must be regulated to zero
we do not have to specify their desired values (this is implicitly done). Line 23 specifies that the interaction
matrix will be computed at the current position L̂s = L̂s(s,p). In the closed loop itself, we find the point
tracking that provides the measurement necessary to compute the pose and the position of the 2D point. The
pose is updated from these measurements using a non-linear minimization method and the displacement θu
along with the depth Z of the point are updated (let us note that operator * has been overloaded to allows
simple frame transformation: cp = cMo

op). The interaction matrix related to logZ has to be computed
according to equation (8). The global task interaction is then updated and the control law computed.

1 // define the features
2 vpFeaturePoint p(point[0]), pd(point[0]) ; // 2D reference point
3 vpGenericFeature logZ(1) ; // log (Z/Z*)
4 vpFeatureThetaU tu ; // ThetaU
5

6 // build the features:
7 // - 1st and 2nd feature: 2D point and log(Z/Z*)
8 double Zd,Z ;
9 vpColVector cP ; // point coordinates in camera frame

10 cP = cMo*point[0] ; Z = cP[2] ; // current Z and p
11 p.buildFrom(point[0].get_x(), point[0].get_y(), Z) ;
12

13 cP = cdMo*point[0] ; Zd = cP[2] ; // desired Zd and pd
14 pd.buildFrom(point[0].get_x(), point[0].get_y(), Zd) ;
15 logZ.set_s(log(Z/Zd)) ;
16

17 // - 3rd feature ThetaU
18 // compute the rotation that the camera has to achieve
19 vpHomogeneousMatrix cdMc ;
20 cdMc = cdMo*cMo.inverse() ; tu.buildFrom(cdMc) ;
21

22 // interaction matrix computed at the current position
23 task.setInteractionMatrixType(vpServo::CURRENT) ;
24

25 // build the task (stack the features)
26 task.addFeature(p,pd) ;
27 task.addFeature(logZ) ;
28 task.addFeature(tu) ; // s = (x, y, logZ, θu)>

29

30 // control loop
31 while(1) {
32 g.acquire(I) ;
33 vpDisplay::display(I) ;
34

35 // compute the pose using a non linear minimisation method
36 pose.clearPoint() ;
37 for (i=0 ; i < 7 ; i++) {
38 dot[i].track(I) ;
39 vpPixelMeterConversion::convertPoint(cam, dot[i], point[i]) ;
40 pose.addPoint(point[i]) ;
41 }
42 pose.computePose(vpPose::LOWE, cMo) ;
43

44 // compute the current Z
45 cP = cMo * point[0] ; Z = cP[2] ;

vpFeaturePoint
vpFeatureThetaU
vpGenericFeature
addFeature
logZ
tu
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46 p.buildFrom(point[0].get_x(), point[0].get_y(), Z) ;
47

48 // compute log (Z/Z*) and the corresponding interaction matrix
49 logZ.set_s(log(Z/Zd)) ;
50 vpMatrix LlogZ(1,6) ;
51 LlogZ[0][0] = LlogZ[0][1] = LlogZ[0][5] = 0 ;
52 LlogZ[0][2] = -1/Z ;
53 LlogZ[0][3] = -p.get_y() ;
54 LlogZ[0][4] = p.get_x() ;
55 logZ.setInteractionMatrix(LlogZ) ;
56

57 cdMc = cdMo*cMo.inverse() ; // Compute the displacement to achieve
58 tu.buildFrom(cdMc) ;
59

60 v = task.computeControlLaw() ;
61 robot.setVelocity(vpRobot::CAMERA_FRAME, v) ;
62

63 vpDisplay::flush(I) ;
64 }

Listing 3.5: An example of task definition: positioning wrt. seven points.

In this example, to compute the rotation that the camera has to achieved we have considered a pose
estimation process. Let us note that this can also be achieved by the estimation of an homography between
the current and desired image (as explained in [6]). ViSP has also the capability to estimate a homography
using various algoritms [3, 6] and to extract from this homography the camera displacement.
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