VISP 2.6.1: Visual Servoing Platform

Augmented reality using vpAROgre class

Lagadic project
http://www.irisa.fr/lagadic

September 1, 2011

Francois Chaumette
Bertrand Delabarre
Eric Marchand
Fabien Spindler
Romain Tallonneau

lrozia—

INVENTORS FOR THE DIGITAL WORLD

CONTENTS 3

Contents
(I__Introduction 4
2 Ogre3D installation| 4
RI UnderLinuxl. o 4
2.2 Under OSX] e e e 4
23 UnderWindows| e 5
(3 Building your project| 5
[4 How to use the vypAROgre class| 5
4.1 Simple approach| 5
4.2 Advanced approach| 8
v o 10
LI Extensions]. 10

2 OGRE3D INSTALLATION

1 Introduction

This tutorial describes the vpAROgre class used for augmented reality. This class is based on the Ogre3D
rendering engine.

Ogre 3D is an open-source graphics rendering engine released, since Ogre 1.7, under the terms of the
MIT license . More information about Ogre 3D can be found on http://www.ogre3d.org.

2 Ogre3D installation

This chapter describes the Ogre3D installation process. If the additional optional OIS (Object Oriented Input
System) library is also installed, you will be able to use input devices (Keyboards, Mice, Joysticks, etc) to
interact with the scene.

Ogre can be installed either from source code (as described in the Ogre wiki), or from a prebuild SDK (
Ogre wiki). The method based on SDK is suggested as it is the easiest on. Below is described the platform
specific installation process.

2.1

Under Linux

On Linux Ubuntu you can install Ogre 3D library with apt-get:

2.2

to get the last Ogre release, add Ogre PPA with: sudo add-apt-repository ppa:ogre-team/ogre
then update your package list with: sudo apt-get update
and finally install Ogre packages with: sudo apt-get install libogre-dev ogre-samples-media

the optional OIS library can be installed with: sudo apt-get install libois-dev

Under OSX

Under OSX, you can install Ogre from OGRE 1.7.2 prebuilt SDK for Mac OS X. You might need as well
CG Toolkit. Below we give the steps to proceed to the installation:

Install |CG Toolkit from existing .dmg
Go to |http://www.ogre3d.org/download/sdk| and download the latest OSX SDK
Double-click the .dmg to mount it

Drag & drop the OgreSDK folder wherever you like to install the SDK. We now assume that this
folder is $HOME /OgreSDK. Il will be easy to adapt the next commands if the SDK is in an other
folder

Copy the Ogre framework in /Library/Frameworks by
cp -p —-r $SHOME/OgreSDK/lib/release/Ogre.framework /Library/Frameworks/

Set OGRE__HOME environment variable to the SDK folder:
if you use sh, by export OGRE_HOME="$HOME/OgreSDK"
if you use tcsh, by setenv OGRE_HOME "S$HOME/OgreSDK"

http://www.gnu.org/licenses/license-list.html
http://www.ogre3d.org
http://www.ogre3d.org/tikiwiki/Building+Ogre
http://www.ogre3d.org/tikiwiki/Installing+the+Ogre+SDK
http://developer.nvidia.com/object/cg_download.html
http://www.ogre3d.org/download/sdk

ISR =T R L - Y N T N

2.3 Under Windows 5

e Set BOOST_ROOT environment variable:
if you use sh, by export BOOST_ROOT="$OGRE_HOME /boost_1_42"
if you use tcsh, by setenv BOOST_ROOT "$SOGRE_HOME /boost_1_42"

2.3 Under Windows

Under Windows, you can install Ogre from OGRE 1.7.2 prebuilt SDK for Visual C++. Download the SDK
matching your IDE version. As described on |Ogre wiki you might also download and install DirectX.
Below we give the steps to proceed to the installation:

e Download and install Ogre SDK to a suitable location, for example in C: \OgreSDK

Set OGRE_HOME environment variable to the SDK folder (ie, C: \OgreSDK)

Set BOOST_ROOT environment variable to the boost folder provided in Ogre SDK (e,
C:\OgreSDK\boost_1_42)

You may also modify the PATH environment variable so that Ogre DLL can be found during execution
(ie, in our case, add C: \OgreSDK\bin\release folder in the path)

e Download and install DirectX.

3 Building your project

To build your project the simplest way is to use CMake. Here is an example of what your CMakeLists.txt
could look like :
CMakeLists.txt:

cmake_minimum_required (VERSION 2.6)
PROJECT (OgreTutorial)

Add visp
FIND_PACKAGE (VISP REQUIRED)
IF (VISP_FOUND)

INCLUDE (${VISP_USE_FILE})
ENDIF (VISP_FOUND)

ADD_EXECUTABLE (HelloWorldOgre HelloWorldOgre.cpp)

4 How to use the vpAROgre class

4.1 Simple approach

In the simple approach, just create a vpAROgre object and initialise it with your models. The rendering
loop is then fairly straightforward: get an image, compute your pose and display your scene. To stop your
application, hit the Escape button. The following HelloWorldOgre. cpp || file shows how to use the
vpAROgre class to do a simple rendering.

HelloWorldOgre.cpp :

'HelloWorldOgre.cpp and CMakeLists.txt files are available in ViSP source tree in
example/manual/ogre directory.

http://www.ogre3d.org/download/sdk
http://www.ogre3d.org/tikiwiki/Installing+the+Ogre+SDK

6 4 HOW TO USE THE VPAROGRE CLASS

#include <visp/vpConfig.h>

1

2 | #include <visp/vpV41l2Grabber.h>

3 | #include <visp/vpl394TwoGrabber.h>

4 | #include <visp/vpDirectShowGrabber.h>
5 | #include <visp/vpOpenCVGrabber.h>

6 | #include <visp/vpHomogeneousMatrix.h>
7 | #include <visp/vpImage.h>

8 | #include <visp/vpCameraParameters.h>
9 | #include <visp/vpAROgre.h>

10

11 int main ()

12

13 // Now we try to find an available framegrabber
14 | #1if defined (VISP_HAVE_V4L2)

15 // Video for linux 2 grabber

16 vpV41l2Grabber grabber;
17 | #elif defined (VISP_HAVE_DC1394_2)

18 // libdcl1394-2

19 vpl394TwoGrabber grabber;

20 | #elif defined (VISP_HAVE_DIRECTSHOW)
21 // OpenCV to gather images

22 vpOpenCVGrabber grabber;

23 #elif defined(VISP_HAVE_OPENCV)

24 // OpenCV to gather images

25 vpOpenCVGrabber grabber;

26 | #felse

27 |# error "You need an available framegrabber to run this example"
28 | #endif

29

30 // Image to stock gathered data

31 // Here we acquire a color image. The consequence will be that

32 // the background texture used in Ogre renderer will be also in color.
33 vpImage<vpRGBa> I;

34 // Open frame grabber

35 // Here we acquire an image from an available framegrabber to update
36 // the image size

37 grabber.open (I);

38

39 // Parameters of our camera

40 double px = 565;

41 double py = 565;

42 double ul0 = grabber.getWidth() / 2;

43 double v0 = grabber.getHeight () / 2;

44 vpCameraParameters cam(px,py,ul,v0);

45 // The matrix with our pose

46 // Defines the pose of the object in the camera frame

47 vpHomogeneousMatrix cMo;

48

49 // Our object

50 // A simulator with the camera parameters defined above,

51 // a grey level background image and of the good size

52 vpAROgre ogre (cam, (unsigned int)grabber.getWidth (), (unsigned int)grabber.getHeight ());
53 // Initialisation

54 // Here we load the requested plugins specified in the "plugins.cfg" file
55 // and the resources specified in the "resources.cfg" file

56 // These two files can be found respectively in ViSP_HAVE_OGRE_PLUGINS_ PATH
57 // and ViSP_HAVE_OGRE_RESOURCES_PATH folders

58 ogre.init (I);

59

60 // Create a basic scene

61 /) ==mmmmmmmmme=csssssssssssssssoso===

62 // Loading things

63 A S

64 // As you will see in section 5, our

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

4.1 Simple approach

// application knows locations where
// it can search for medias.

// Here we use a mesh included in

// the installation files : a robot.

// Here we load the "robot.mesh" model that is found thanks to the ressources

// specified in the "resources.cfg" file

ogre.load("Robot", "robot.mesh");

ogre.setPosition ("Robot", vpTranslationVector (0, 0.05, 0.5));
ogre.setScale ("Robot"”, 0.001,0.001,0.001);

ogre.setRotation ("Robot", vpRotationMatrix (vpRxyzVector (M_PI, -M_PI/4,

// Rendering loop, ended with on escape
while (ogre.continueRendering()) {
// Image Acquisition
// Acquire a new image
grabber.acquire (I);
//Pose computation
VIR
// cMo updated
// Display the robot at the position specified by cMo with vpAROgre
ogre.display (I, cMo);
}
// Release video device
grabber.close();

}

locations

Figure[I|shows the result of HelloWorldOgre. cpp.

This approach is really basic and can be not sufficient to achieve a complete 3D application. Indeed,
using this method, it is not possible to interact with the application with any other button but the Escape one.

In this case, a new class, inheriting from the class vpAROgre, must be created.

® & & Visp - Augmented Reality

Figure 1: A snapshot of the rendering produced by HelloWorldOgre. cpp. Color images acquired by
an available framegrabber are used as a background texture, while a robot is projected in the scene at a static
position with translation coordinates (0, 0.05,0.05) and rotation coordinates (7, —7/4,0).

N - Y N NV R SR

8 4 HOW TO USE THE VPAROGRE CLASS

4.2 Advanced approach

If you want a complete Ogre application you should inherit from vpAROgre. This way you can redefine
your basic scene easilly, choose materials, specify a behaviour and do many other things. In the following
example, the robot used in the first example will be animated.

We begin by redefining, in the following HelloWorldOgreAdvanced. cpp [} a class which inherit
from vpAROgre so we do not have to do everything again from scratch.

HelloWorldOgreAdvanced. cpp :

#include <visp/vpConfig.h>

#include <visp/vpV41l2Grabber.h>
#include <visp/vpl394TwoGrabber.h>
#include <visp/vpDirectShowGrabber.h>
#include <visp/vpOpenCVGrabber.h>
#include <visp/vpHomogeneousMatrix.h>
#include <visp/vpImage.h>

#include <visp/vpCameraParameters.h>
#include <visp/vpAROgre.h>

class vpAROgreAdvanced : public vpAROgre
{
private:
// Animation attribute
Ogre::AnimationState » mAnimationState;

public:
vpAROgreAdvanced (const vpCameraParameters &cam = vpCameraParameters(),
unsigned int width = 640, unsigned int height = 480)
vpAROgre (cam, width, height)

Here, instead of managing the meshes from the main program, the scene is defined by overloading the
createScene () method defined in vpAROgre. For example:

protected:

void createScene ()

{
// Create the Entity
Ogre: :Entity* robot = mSceneMgr->createEntity ("Robot", "robot.mesh");
// Attach robot to scene graph
Ogre: :SceneNodex RobotNode = mSceneMgr->getRootSceneNode () ->createChildSceneNode ("Robot") ;
RobotNode->setPosition (0, 0.05, 0.5);
RobotNode->attachObject (robot) ;
RobotNode->scale (0.001,0.001,0.001) ;
RobotNode->pitch (Ogre: :Degree (180)) ;
RobotNode->yaw (Ogre: :Degree (-90)) ;

// The animation

// Set the good animation

mAnimationState = robot->getAnimationState("Idle");
// Start over when finished
mAnimationState->setLoop (true);

// Animation enabled

mAnimationState->setEnabled(true);

’HelloWorldOgreAdvanced.cpp and CMakeLists.txt files are available in ViSP source tree in
example/manual/ogre directory.

4.2 Advanced approach 9

In this example, the robot is animated with the "Idle" state. It makes the robot move slightly, look around
and wait. The animations associated to a 3D model can be checked using tools such as|Cegui Mesh Viewer.
The animation speed is specified by giving at each new frame the time since the last one. This is done

by overloading the method customframeEnded () :

bool customframeEnded(const Ogre::FrameEvent& evt)

{
// Update animation
// To move, we add it the time since last frame
mAnimationState->addTime (evt.timeSincelastFrame);
return true;

};// End of vpAROgreAdvanced class definition

The new class can be used exactly like the original one:

int main ()
{
// Now we try to find an available framegrabber
#if defined (VISP_HAVE_VA4L2)
// Video for linux 2 grabber
vpV41l2Grabber grabber;
#elif defined (VISP_HAVE_DC1394_2)
// 1libdcl394-2
vpl394TwoGrabber grabber;
#elif defined (VISP_HAVE_DIRECTSHOW)
// OpenCV to gather images
vpOpenCVGrabber grabber;
#elif defined (VISP_HAVE_OPENCV)
// OpenCV to gather images
vpOpenCVGrabber grabber;
#else
error "You need an available framegrabber to run this example"
#endif

// Image to store gathered data

// Here we acquire a grey level image. The consequence will be that
// the background texture used in Ogre renderer will be also in grey
// level.

vpImage<unsigned char> I;

// Open frame grabber

// Here we acquire an image from an available framegrabber to update
// the image size

grabber.open (I);

// Parameters of our camera

double px = 565;

double py = 565;

double u0 grabber.getwidth() / 2;

double v0 = grabber.getHeight () / 2;

vpCameraParameters cam(px,py,ul,v0);

// The matrix with our pose

vpHomogeneousMatrix cMo;

// Our object

vpAROgreAdvanced ogre (cam, (unsigned int)grabber.getWidth (), (unsigned int)grabber.getHeight ());

// Initialisation
ogre.init (I);

// Rendering loop

while (ogre.continueRendering ()) {
// Image Acquisition
grabber.acquire (I);
// Pose computation

http://www.ogre3d.org/tikiwiki/CEGUI+Mesh+Viewer

48
49
50
51
52
53
54
55

10 5 WARNINGS

VIR
// cMo updated
// Display with vpAROgre
ogre.display (I, cMo);
}
// Release video device
grabber.close() ;

}

As you can see the main program basically stays the same, we just redefined some methods to have a
moving entity.
To know more about creating Ogre3D applications, please refer to their official website and particularily
their wiki where you will find various tutorials :

http://www.ogre3d.org/tikiwiki/tiki-index.php.

S Warnings

5.1 Extensions

Ogre3D uses its own 3D model and material extensions. See its website for more information on how to
export your models in the good format:

http://www.ogre3d.org/tikiwiki/OGRE+Exporters.

5.2 Running your application

To run, the created application will need a resources.cfgfile and aplugin.cfg file. These files tell
Ogre where to look for textures, models, materials and other things like that. They also tell Ogre which
plugins to use. Note that ViSP users don’t have to create manually these files. ViSP is able to detectﬂ and
use existing files, or if they are not detected to create automatically such files. Below, we give examples of
what these two files could look like.

Plugins

The plugins.cfqg file is used to set up graphical features of the application like, for example,
the rendering system to use. In ViSP, the location of plugins.cfqg file is specified by the
ViSP_HAVE_OGRE_PLUGINS_PATH macro defined in visp/vpConfig.h file. To ease ViSP
usage, if, during ViSP configuration plugins.cfg is not found, ViSP creates a plugins.cfg file in
data/ogre-simulator built tree. As shown below, in plugins.cfg line 4, the folder that contains
the plugins is first defined. It is advised to set an absolute folder. Then the plugins that will be used are
defined. Beware if they are not correctly found you could get errors.

plugins.cfqg:

3If you installed Ogre from a prebuilt SDK you should find those files in OGRE_HOME /bin directory.

http://www.ogre3d.org/tikiwiki/tiki-index.php
http://www.ogre3d.org/tikiwiki/OGRE+Exporters

o e Y B NP I SR

N e N B NV R SR

5.2 Running your application 11

Defines plugins to load

Define plugin folder
PluginFolder=0OGRE_HOME/bin # (or /usr/local/share/OGRE for example)

Define plugins

If we do not like Direct3D we Jjust comment them
Plugin=RenderSystem_Direct3D9

Plugin=RenderSystem_Direct3D10
Plugin=RenderSystem_GL

Plugin=Plugin_ParticleFX
Plugin=Plugin_BSPSceneManager
Plugin=Plugin_OctreeSceneManager
Plugin=Plugin_CgProgramManager

Resources

In HelloWorldOgre.cpp line 72 when we load meshes, we just have to give their name (it is the
same with materials and other medias). This is possible thanks to the resources.cfqg file. In this
file the folders where what we will load is located are defined, so that Ogre preparses them and looks
for the resources when asked. In ViSP, the location of the resources.cfqg file is specified by the
ViSP_HAVE_OGRE_RESOURCES_PATH macro defined in the visp/vpConfig.h file.

resources.cfg:

Resources required by the sample browser and most samples.

[Essential]

Here we chose to give absolute path to be independent with relation to the executable folder
Zip=/usr/local/share/OGRE/media/packs/SdkTrays.zip
FileSystem=/usr/local/share/OGRE/media/thumbnails

Common sample resources needed by many of the samples.
Rarely used resources should be separately loaded by the
samples which require them.

[Popular]

FileSystem=/usr/local/share/OGRE/media/fonts
FileSystem=/usr/local/share/OGRE/media/materials/programs
FileSystem=/usr/local/share/OGRE/media/materials/scripts
FileSystem=/usr/local/share/OGRE/media/materials/textures
FileSystem=/usr/local/share/OGRE/media/materials/textures/nvidia
FileSystem=/usr/local/share/OGRE/media/models
FileSystem=/usr/local/share/OGRE/media/particle
FileSystem=/usr/local/share/OGRE/media/RTShaderLib

We could also give a relative path
FileSystem=../../../../media/RTShaderLib/materials
Zip=/usr/local/share/OGRE/media/packs/cubemap.zip
Zip=/usr/local/share/OGRE/media/packs/cubemapsJS.zip
Zip=/usr/local/share/OGRE/media/packs/dragon.zip
Zip=/usr/local/share/OGRE/media/packs/fresneldemo.zip
Zip=/usr/local/share/OGRE/media/packs/ogretestmap.zip
Zip=/usr/local/share/OGRE/media/packs/ogredance.zip
Zip=/usr/local/share/OGRE/media/packs/Sinbad.zip

[General]
FileSystem=/usr/local/share/OGRE/media

	Introduction
	Ogre3D installation
	Under Linux
	Under OSX
	Under Windows

	Building your project
	How to use the vpAROgre class
	Simple approach
	Advanced approach

	Warnings
	Extensions
	Running your application

