ViSP 2.6.0: Visual servoing platform

ViSP tracking methods overview

October 12th, 2010

Lagadic project
INRIA Rennes-Bretagne Atlantique
http://www.irisa.fr/lagadic
Tracking methods with ViSP

1. Dot tracker
2. KLT point tracker
3. Moving edges tracker
4. 3D model-based tracker
1. Dot tracker

A dot:

- A dot is a part of image where the connected pixels have the same level
- Not necessary an ellipsoid (even it is by default)
- Two classes `vpDot` and `vpDot2`

The dot in ViSP is defined by:

- The gray level
- The center of gravity (cog)
- The size
- The moments:
 - The surface m_{00}
 - Inertia first order moments along i and j m_{01} and m_{10}
 - Inertia first second moments along i and j m_{02} and m_{20}
 - m_{11}
1. Dot tracker with vpDot class

Tracking method : vpDot

• Initialization : Define the dot cog (generally by clicking in the dot)

• Tracking :
 - Binarisation of the image
 - Recursive method to detect all the neighbour components belonging to the object. Start from the previous coordinates of the center of gravity
 - If the dot is found : Compute the parameters (size, moment, …)
 - If no dot is found : The tracking fails
1. Dot tracker with vpDot2 class

Tracking method : vpDot2

- Initialization : Define the dot cog (generally by clicking in the dot)

- Tracking :
 - Binarisation of the image
 - From the previous position of the cog, goes right to detect the boundary, then follow the boundary in order to compute the Freeman chain
 - Use the Freeman Chain to find the dot characteristics (cog, size, moments)
 - If a dot is found, check if it looks like the previous dot (size, moment)
 - If no dot or not similar, check if the dot is in an image part around
1. Dot Tracker

Advantages:

- Robust: Almost no tracking error if noise and specularity not too strong
- Give information about the tracked objects (cog, moments)
- In vpDot2: automatic dot detection for initialization and if a dot is lost search a similar dot in a larger ROI

Limits:

- Speed depends on the size: may be slow if the object is big, especially with vpDot.
- vpDot can not track an object if the displacement is too large
- Due to the recursivity limitation on some OS like windows, vpDot is not able to track huge dots.
2. KLT point tracker

KLT : Kanade – Lucas -Tomasi
• The goal is to align a template $T(x)$ to an input image $I(x)$
• Could be also a small window in the image
• Based on a gradient method

KLT in ViSP :
• vpKltOpenCv class that interfaces the KLT implemented in OpenCV
• A patch is defined by :
 - the tracked points in the current image
 - the tracked points in the previous image
• The points lost during the tracking are given if necessary
2. KLT point tracker

Tracking method:

• The goal is to move the patch until minimizing the image dissimilarity

\[\sum_x [I(W(x, p) - T(x))] \]

• Where \(W(x, p) \) corresponds to a warp which can be more or less complex

For a translation:

\[W(x, p) = \begin{bmatrix} x + p_1 \\ y + p_2 \end{bmatrix} \]

• Assuming that \(p \) is known and best increment \(\Delta p \) is sought, the problem becomes:

\[\sum_x [I(W(x, p + \Delta p) - T(x))] \]
2. KLT point tracker

Tracking method:

• The problem is linearized by performing first order Taylor extension

\[\sum_x \left[I(W(x, p + \Delta p)) + \nabla I \frac{\partial W}{\partial p} \Delta p - T(x) \right]^2 \]

• The function is derived and set equal to 0 to find the minimum

\[\Delta p = H^{-1} \left[\nabla I \frac{\partial W}{\partial p} \right]^T \left[T(x) - I(W(x, p)) \right] \]

where \(H = \sum_x \left[\nabla I \frac{\partial W}{\partial p} \right]^T \left[\nabla I \frac{\partial W}{\partial p} \right] \)

• \(p \) is updated with this method \(p = p + \Delta p \) until \(\Delta p < \varepsilon \)
2. KLT point tracker

Good features :
• A good point to track :
 - Textured
 - High intensity variations in both x and y axis
• Harris points are used

Advantages :
• Very fast method
• In ViSP, Harris points detection is automatic

Limits :
• Displacement between two images must be small
• In ViSP : use IplImage instead of vpImage : need conversion
• Few parameters are available.
3. Moving edges tracker

Moving edges:
• Based on edge detector with gradient filter
• 3 types: line, ellipse and nurbs

In ViSP:
• `vpMeLine`, `vpMeEllipse`, `vpMeNurbs` classes that inherit from `vpMeTracker`
• `vpMeTracker` contains a list of `vpMeSite`
• Each `vpMeSite` corresponds to one edge point in the image.
• `vpMeSite` is defined by:
 - A position \((i,j)\)
 - An angle which corresponds to the normal to the edge
 - An history of the previous convolution result
3. Moving edges tracker for a line

Method:
- Capture a new image
- For each vpMeSite: build a list of points along the normal to the edge centered on the edge point previous location
3. Moving edges tracker

Method:

- For each point computes the convolution with a filter optimized to detect edges with an angle near the previous angle
3. Moving edges tracker

Method :

• If one point respects the two conditions :
 - The convolution result is close to the previous one
 - The convolution result is high enough
• Then it is considered as the new edge point
3. Moving edges tracker

Method:
- After all vpMeSite are detected, characteristics of the line, ellipse and nurbs are used to detect outliers
- To suppress outliers: a robust method based on M-Estimators is used

vpMeLine class:
- A line is defined by its equation

\[ai + bj + c = 0 \quad i \cos(\theta) + j \sin(\theta) - \rho = 0 \]
3. Moving edges tracker

vpMeLine class:
- The parameters :
 - a, b and c
 - rho and theta

vpMeEllipse class:
- An ellipse is defined by it’s ellipse equation

\[i^2 + K_0 j^2 + K_1 ij + 2K_2 i + 2K_3 j + K_4 = 0 \]
- The K parameters are available in vpMeEllipse class
3. Moving edges tracker

vpMeEllipse class:

• These two equations describe the ellipse points too:

\[
\begin{align*}
 i &= i_c + b \cos(e) \cos(\alpha) - a \sin(e) \sin(\alpha) \\
 j &= j_c + b \sin(e) \cos(\alpha) - a \cos(e) \sin(\alpha)
\end{align*}
\]

• Parameters \(i_c, j_c, a, b\) and \(e\) are available in \(\text{vpMeEllipse}\). \(\alpha\) is in \([0, 2\pi]\)
3. Moving edges tracker

vpMeNurbs class:

- The edge is defined by a parametric curve

\[
N_{i,0}(u) = \begin{cases}
1 & \text{si } u_i \leq u < u_{i+1} \\
0 & \text{sinon}
\end{cases}
\]

\[
N_{i,p}(u) = \frac{u - u_i}{u_{i+p} - u_i} N_{i,p-1}(u) + \frac{u_{i+p+1} - u}{u_{i+p+1} - u_{i+1}} N_{i+1,p-1}(u)
\]

where \(0 \leq u \leq 1 \)

Edge points coordinates \(\rightarrow \) \(C(u) = \frac{\sum_{i=0}^{n} N_{i,p}(u)\omega_i P_i}{\sum_{i=0}^{n} N_{i,p}(u)\omega_i} \) where \(P_i \) are control points and \(\omega_i \) are weights.

- All the points coordinates are given
- All the derivatives at any points are given too
- All the parameters \(N_{i,p} \), \(P_i \) and \(\omega_i \) are available
3. Moving edges tracker

Advantages:
- Gives the equation of the tracked edges
- Fast tracking method
- Useful to initialize visual servoing features implemented in ViSP

Limits:
- The speed depends on the number of points and the size of the search range. If the parameters are not optimal, the algorithm can be “slow”
- vpMeNurbs parameters are difficult to set correctly
- vpMeNurbs is not so robust if the shape of the edge is too complex
4. 3D model-based tracker

Model-based tracking:
- Track a 3D model thanks to the moving edges method
- Use a virtual visual servoing
- In ViSP implemented in vpMbEdgeTracker class

Method: Initialization
- Require a 3D model (CAO, WRL, …)
- Need to compute the initial pose
- The pose is used to project the model on the image
- The moving edges points can be initialized
4. 3D model-based tracker

Method: Tracking

- Assuming that the pose corresponding to the previous image is known.
- The new lines are tracked.
- The goal is to “move” the pose to match the object in the new image with the projection of the model.
- The pose to compute is defined by:

\[
\hat{c}M_o = \arg \min_{cR_o, c\ell_o} \sum_i \left(p_{d_i} - pr(\hat{c}M_o \circ P_i) \right)^2
\]

- The entire model is taken into account during the minimization.