Visual Servoing Platform  version 3.6.1 under development (2024-03-28)
testPose.cpp

Compute the pose of a 3D object using the Dementhon, Lagrange and Non-Linear approach.

/*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2023 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Compute the pose of a 3D object using the Dementhon, Lagrange and
* Non-Linear approach.
*/
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpMeterPixelConversion.h>
#include <visp3/core/vpPixelMeterConversion.h>
#include <visp3/core/vpDebug.h>
#include <visp3/core/vpGaussRand.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpPoint.h>
#include <visp3/core/vpRotationMatrix.h>
#include <visp3/core/vpRxyzVector.h>
#include <visp3/core/vpTranslationVector.h>
#include <visp3/vision/vpPose.h>
#include <stdio.h>
#include <stdlib.h>
#define L 0.035
#define L2 0.1
void print_pose(const vpHomogeneousMatrix &cMo, const std::string &legend);
int compare_pose(const vpPose &pose, const vpHomogeneousMatrix &cMo_ref, const vpHomogeneousMatrix &cMo_est, const vpCameraParameters &cam,
const std::string &legend, const double &translation3DThresh, const double &rotationRadian3DThresh, const double &pose2DThresh, const double &posePixThresh);
int compare_pose(const vpPose &pose, const vpHomogeneousMatrix &cMo_ref, const vpHomogeneousMatrix &cMo_est, const vpCameraParameters &cam,
const std::string &legend)
{
return compare_pose(pose, cMo_ref, cMo_est, cam,
legend, 0.001, 0.001, 0.001, 1.);
}
// print the resulting estimated pose
void print_pose(const vpHomogeneousMatrix &cMo, const std::string &legend)
{
std::cout << std::endl
<< legend << "\n "
<< "tx = " << cpo[0] << "\n "
<< "ty = " << cpo[1] << "\n "
<< "tz = " << cpo[2] << "\n "
<< "tux = vpMath::rad(" << vpMath::deg(cpo[3]) << ")\n "
<< "tuy = vpMath::rad(" << vpMath::deg(cpo[4]) << ")\n "
<< "tuz = vpMath::rad(" << vpMath::deg(cpo[5]) << ")\n"
<< std::endl;
}
// test if pose is well estimated
int compare_pose(const vpPose &pose, const vpHomogeneousMatrix &cMo_ref, const vpHomogeneousMatrix &cMo_est, const vpCameraParameters &cam,
const std::string &legend, const double &translation3DThresh, const double &rotation3DThresh, const double &pose2DThresh, const double &posePixThresh)
{
vpPoseVector pose_ref = vpPoseVector(cMo_ref);
vpPoseVector pose_est = vpPoseVector(cMo_est);
int fail_3d = 0;
// Test done on the 3D pose
for (unsigned int i = 0; i < 6; i++) {
double pose3DThresh = 0.;
if (i < 3) {
pose3DThresh = translation3DThresh;
}
else {
pose3DThresh = rotation3DThresh;
}
if (std::fabs(pose_ref[i] - pose_est[i]) > pose3DThresh) {
fail_3d = 1;
std::cout << "ref[" << i << "] - est[" << i << "] = " << pose_ref[i] - pose_est[i] << " > " << pose3DThresh << std::endl;
}
}
std::cout << "Based on 3D parameters " << legend << " is " << (fail_3d ? "badly" : "well") << " estimated" << std::endl;
// // Test done on the residual
// Residual expressed in meters
double r = pose.computeResidual(cMo_est);
if (pose.listP.size() < 4) {
fail_3d = 1;
std::cout << "Not enough point" << std::endl;
return fail_3d;
}
r = sqrt(r / pose.listP.size());
// std::cout << "Residual on each point (meter): " << r << std::endl;
int fail_2d = (r > pose2DThresh) ? 1 : 0;
std::cout << "Based on 2D residual (" << r << ") " << legend << " is " << (fail_2d ? "badly" : "well") << " estimated"
<< std::endl;
// Residual expressed in pixels
double r_pix = pose.computeResidual(cMo_est, cam);
r_pix = sqrt(r_pix / pose.listP.size());
// std::cout << "Residual on each point (pixel): " << r << std::endl;
int fail_pix = (r_pix > posePixThresh) ? 1 : 0;
std::cout << "Based on pixel residual (" << r_pix << ") " << legend << " is " << (fail_pix ? "badly" : "well") << " estimated"
<< std::endl;
return fail_3d + fail_2d + fail_pix;
}
int main()
{
#if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
try {
int test_planar_fail = 0, test_non_planar_fail = 0, fail = 0;
const double translation3DthreshWhenNoise = 0.005;
const double rotation3DthreshWhenNoise = vpMath::rad(1.);
const double residual2DWhenNoise = 0.001;
const double residualPixelWhenNoise = 1.;
vpHomogeneousMatrix cMo; // will contain the estimated pose
vpCameraParameters cam; // Default camera parameters to compute the residual in terms of pixel
{
//
// Test planar case with 4 points
//
std::cout << "Start test considering planar case with 4 points..." << std::endl;
std::cout << "===================================================" << std::endl;
// vpPoseVector cpo_ref = vpPoseVector(0.01, 0.02, 0.25, vpMath::rad(5), 0, vpMath::rad(10));
vpPoseVector cpo_ref = vpPoseVector(-0.01, -0.02, 0.3, vpMath::rad(20), vpMath::rad(-20), vpMath::rad(10));
vpHomogeneousMatrix cMo_ref(cpo_ref);
int npt = 4;
std::vector<vpPoint> P(npt); // Point to be tracked
double Z = 0.05; // FS: Dementhon estimation is not good when Z=0.3
P[0].setWorldCoordinates(-L, -L, Z);
P[1].setWorldCoordinates(L, -L, Z);
P[2].setWorldCoordinates(L, L, Z);
P[3].setWorldCoordinates(-L, L, Z);
vpPose pose;
for (int i = 0; i < npt; i++) {
P[i].project(cMo_ref);
// P[i].print();
pose.addPoint(P[i]); // and added to the pose computation class
}
// Let's go ...
print_pose(cMo_ref, std::string("Reference pose"));
std::cout << "-------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Lagrange"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange");
test_planar_fail |= fail;
std::cout << "--------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Dementhon"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon");
test_planar_fail |= fail;
std::cout << "--------------------------------------------------" << std::endl;
pose.setRansacThreshold(0.01);
print_pose(cMo, std::string("Pose estimated by Ransac"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Ransac");
test_planar_fail |= fail;
std::cout << "--------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Lagrange then Lowe"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange then Lowe");
test_planar_fail |= fail;
std::cout << "--------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Dementhon then Lowe"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then Lowe");
test_planar_fail |= fail;
// Now Virtual Visual servoing
std::cout << "--------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by VVS");
test_planar_fail |= fail;
std::cout << "-------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Dementhon then by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then by VVS");
test_planar_fail |= fail;
std::cout << "-------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Lagrange then by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange then by VVS");
test_planar_fail |= fail;
std::cout << "-------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated either by Dementhon or Lagrange then by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose either by Dementhon or Lagrange then by VVS");
test_planar_fail |= fail;
}
{
//
// Test non-planar case with 6 points (at least 6 points for Lagrange non planar)
//
std::cout << "\nStart test considering non-planar case with 6 points..." << std::endl;
std::cout << "=======================================================" << std::endl;
vpPoseVector cpo_ref = vpPoseVector(0.01, 0.02, 0.25, vpMath::rad(5), 0, vpMath::rad(10));
vpHomogeneousMatrix cMo_ref(cpo_ref);
int npt = 6;
std::vector<vpPoint> P(npt); // Point to be tracked
P[0].setWorldCoordinates(-L, -L, 0); // Lagrange not accurate...
P[0].setWorldCoordinates(-L, -L, -0.02);
P[1].setWorldCoordinates(L, -L, 0);
P[2].setWorldCoordinates(L, L, 0);
P[3].setWorldCoordinates(-2 * L, 3 * L, 0);
P[4].setWorldCoordinates(-L, L, 0.01);
P[5].setWorldCoordinates(L, L / 2., 0.03);
vpPose pose;
for (int i = 0; i < npt; i++) {
P[i].project(cMo_ref);
// P[i].print();
pose.addPoint(P[i]); // and added to the pose computation class
}
// Let's go ...
print_pose(cMo_ref, std::string("Reference pose"));
std::cout << "-------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Lagrange"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange");
test_non_planar_fail |= fail;
std::cout << "--------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Dementhon"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon");
test_non_planar_fail |= fail;
std::cout << "--------------------------------------------------" << std::endl;
pose.setRansacThreshold(0.01);
print_pose(cMo, std::string("Pose estimated by Ransac"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Ransac");
test_non_planar_fail |= fail;
std::cout << "--------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Lagrange then Lowe"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange then Lowe");
test_non_planar_fail |= fail;
std::cout << "--------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Dementhon then Lowe"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then Lowe");
test_non_planar_fail |= fail;
// Now Virtual Visual servoing
std::cout << "--------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by VVS");
test_non_planar_fail |= fail;
std::cout << "-------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Dementhon then by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then by VVS");
test_non_planar_fail |= fail;
std::cout << "-------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Lagrange then by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange then by VVS");
test_non_planar_fail |= fail;
std::cout << "-------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated either by Dementhon or Lagrange then by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose either by Dementhon or Lagrange then by VVS");
test_non_planar_fail |= fail;
}
//
// Test non-planar case with 4 points (Lagrange can not be used)
//
std::cout << "\nStart test considering non-planar case with 4 points..." << std::endl;
std::cout << "=======================================================" << std::endl;
{
int npt = 4;
std::vector<vpPoint> P(npt); // Point to be tracked
P[0].setWorldCoordinates(-L2, -L2, 0);
P[1].setWorldCoordinates(L2, -L2, 0.2);
P[2].setWorldCoordinates(L2, L2, -0.1);
P[3].setWorldCoordinates(-L2, L2, 0);
vpPose pose;
vpPoseVector cpo_ref = vpPoseVector(-0.1, -0.2, 0.8, vpMath::rad(10), vpMath::rad(-10), vpMath::rad(25));
vpHomogeneousMatrix cMo_ref(cpo_ref);
for (int i = 0; i < npt; i++) {
P[i].project(cMo_ref);
// P[i].print(); printf("\n");
pose.addPoint(P[i]); // and added to the pose computation class
}
// Let's go ...
print_pose(cMo_ref, std::string("Reference pose"));
std::cout << "--------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Dementhon"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon");
test_non_planar_fail |= fail;
std::cout << "--------------------------------------------------" << std::endl;
pose.setRansacThreshold(0.01);
print_pose(cMo, std::string("Pose estimated by Ransac"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Ransac");
test_non_planar_fail |= fail;
std::cout << "--------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Dementhon then Lowe"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then Lowe");
test_non_planar_fail |= fail;
// Now Virtual Visual servoing
std::cout << "--------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by VVS");
test_non_planar_fail |= fail;
std::cout << "-------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Dementhon then by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then by VVS");
test_non_planar_fail |= fail;
std::cout << "-------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated either by Dementhon or Lagrange then by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose either by Dementhon or Lagrange then by VVS");
test_non_planar_fail |= fail;
std::cout << "-------------------------------------------------" << std::endl;
}
//
// Test computeResidual with results expressed in pixel
//
std::cout << "Start test considering planar case with 4 points and noise on the projection..." << std::endl;
std::cout << "===================================================" << std::endl;
{
vpPoseVector cpo_ref = vpPoseVector(-0.01, -0.02, 0.3, vpMath::rad(20), vpMath::rad(-20), vpMath::rad(10));
vpHomogeneousMatrix cMo_ref(cpo_ref);
int npt = 4;
std::vector<vpPoint> P(npt); // Point to be tracked
double Z = 0.05; // FS: Dementhon estimation is not good when Z=0.3
P[0].setWorldCoordinates(-L, -L, Z);
P[1].setWorldCoordinates(L, -L, Z);
P[2].setWorldCoordinates(L, L, Z);
P[3].setWorldCoordinates(-L, L, Z);
vpPose pose;
vpGaussRand random(0.08, 0., 42); // Gaussian noise of mean = 0. and sigma = 1.
for (int i = 0; i < npt; i++) {
// Projecting point in camera frame
P[i].project(cMo_ref);
// Computing theoretical u and v based on the 2D coordinates
double x_theo = P[i].get_X() / P[i].get_Z();
double y_theo = P[i].get_Y() / P[i].get_Z();
double u_theo = 0., v_theo = 0.;
vpMeterPixelConversion::convertPoint(cam, x_theo, y_theo, u_theo, v_theo);
// Adding noise to u, v
double u_noisy = u_theo + random();
double v_noisy = v_theo + random();
// Computing corresponding x, y
double x_noisy = 0., y_noisy = 0.;
vpPixelMeterConversion::convertPoint(cam, u_noisy, v_noisy, x_noisy, y_noisy);
P[i].set_x(x_noisy);
P[i].set_y(y_noisy);
pose.addPoint(P[i]); // and added to the pose computation class
std::cout << "P[" << i << "]:\n\tu_theo = " << u_theo << "\tu_noisy = " << u_noisy << std::endl;
std::cout << "\tv_theo = " << v_theo << "\tv_noisy = " << v_noisy << std::endl;
std::cout << "\tx_theo = " << x_theo << "\ty_noisy = " << x_noisy << std::endl;
std::cout << "\ty_theo = " << y_theo << "\tx_noisy = " << y_noisy << std::endl;
}
print_pose(cMo_ref, std::string("Reference pose"));
std::cout << "-------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Lagrange"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_planar_fail |= fail;
std::cout << "--------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Dementhon"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_planar_fail |= fail;
std::cout << "--------------------------------------------------" << std::endl;
pose.setRansacThreshold(0.01);
print_pose(cMo, std::string("Pose estimated by Ransac"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Ransac"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_planar_fail |= fail;
std::cout << "--------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Lagrange then Lowe"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange then Lowe"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_planar_fail |= fail;
std::cout << "--------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Dementhon then Lowe"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then Lowe"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_planar_fail |= fail;
// Now Virtual Visual servoing
std::cout << "--------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by VVS"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_planar_fail |= fail;
std::cout << "-------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Dementhon then by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then by VVS"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_planar_fail |= fail;
std::cout << "-------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Lagrange then by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange then by VVS"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_planar_fail |= fail;
std::cout << "-------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated either by Dementhon or Lagrange then by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose either by Dementhon or Lagrange then by VVS"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_planar_fail |= fail;
}
//
// Test non-planar case with 6 points (at least 6 points for Lagrange non planar)
//
std::cout << "\nStart test considering non-planar case with 6 points and noise on the projection..." << std::endl;
std::cout << "=======================================================" << std::endl;
{
vpPoseVector cpo_ref = vpPoseVector(0.01, 0.02, 0.25, vpMath::rad(5), 0, vpMath::rad(10));
vpHomogeneousMatrix cMo_ref(cpo_ref);
int npt = 6;
std::vector<vpPoint> P(npt); // Point to be tracked
P[0].setWorldCoordinates(-L, -L, 0); // Lagrange not accurate...
P[0].setWorldCoordinates(-L, -L, -0.02);
P[1].setWorldCoordinates(L, -L, 0);
P[2].setWorldCoordinates(L, L, 0);
P[3].setWorldCoordinates(-2 * L, 3 * L, 0);
P[4].setWorldCoordinates(-L, L, 0.01);
P[5].setWorldCoordinates(L, L / 2., 0.03);
vpPose pose;
vpGaussRand random(0.08, 0., 42); // Gaussian noise of mean = 0. and sigma = 1.
for (int i = 0; i < npt; i++) {
// Projecting point in camera frame
P[i].project(cMo_ref);
// Computing theoretical u and v based on the 2D coordinates
double x_theo = P[i].get_X() / P[i].get_Z();
double y_theo = P[i].get_Y() / P[i].get_Z();
double u_theo = 0., v_theo = 0.;
vpMeterPixelConversion::convertPoint(cam, x_theo, y_theo, u_theo, v_theo);
// Adding noise to u, v
double u_noisy = u_theo + random();
double v_noisy = v_theo + random();
// Computing corresponding x, y
double x_noisy = 0., y_noisy = 0.;
vpPixelMeterConversion::convertPoint(cam, u_noisy, v_noisy, x_noisy, y_noisy);
P[i].set_x(x_noisy);
P[i].set_y(y_noisy);
pose.addPoint(P[i]); // and added to the pose computation class
std::cout << "P[" << i << "]:\n\tu_theo = " << u_theo << "\tu_noisy = " << u_noisy << std::endl;
std::cout << "\tv_theo = " << v_theo << "\tv_noisy = " << v_noisy << std::endl;
std::cout << "\tx_theo = " << x_theo << "\ty_noisy = " << x_noisy << std::endl;
std::cout << "\ty_theo = " << y_theo << "\tx_noisy = " << y_noisy << std::endl;
}
// Let's go ...
print_pose(cMo_ref, std::string("Reference pose"));
std::cout << "-------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Lagrange"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_non_planar_fail |= fail;
std::cout << "--------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Dementhon"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_non_planar_fail |= fail;
std::cout << "--------------------------------------------------" << std::endl;
pose.setRansacThreshold(0.01);
print_pose(cMo, std::string("Pose estimated by Ransac"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Ransac"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_non_planar_fail |= fail;
std::cout << "--------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Lagrange then Lowe"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange then Lowe"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_non_planar_fail |= fail;
std::cout << "--------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Dementhon then Lowe"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then Lowe"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_non_planar_fail |= fail;
// Now Virtual Visual servoing
std::cout << "--------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by VVS"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_non_planar_fail |= fail;
std::cout << "-------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Dementhon then by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then by VVS"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_non_planar_fail |= fail;
std::cout << "-------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Lagrange then by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Lagrange then by VVS"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_non_planar_fail |= fail;
std::cout << "-------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated either by Dementhon or Lagrange then by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose either by Dementhon or Lagrange then by VVS"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_non_planar_fail |= fail;
}
//
// Test non-planar case with 4 points (Lagrange can not be used)
//
std::cout << "\nStart test considering non-planar case with 4 points and noise on the projection..." << std::endl;
std::cout << "=======================================================" << std::endl;
{
int npt = 4;
std::vector<vpPoint> P(npt); // Point to be tracked
P[0].setWorldCoordinates(-L2, -L2, 0.2);
P[1].setWorldCoordinates(L2, -L2, 0.4);
P[2].setWorldCoordinates(L2, L2, 0.1);
P[3].setWorldCoordinates(-L2, L2, 0.4);
vpPose pose;
vpPoseVector cpo_ref = vpPoseVector(-0.1, -0.2, 0.8, vpMath::rad(10), vpMath::rad(-10), vpMath::rad(25));
vpHomogeneousMatrix cMo_ref(cpo_ref);
vpGaussRand random(0.08, 0., 42); // Gaussian noise of mean = 0. and sigma = 1.
for (int i = 0; i < npt; i++) {
// Projecting point in camera frame
P[i].project(cMo_ref);
// Computing theoretical u and v based on the 2D coordinates
double x_theo = P[i].get_X() / P[i].get_Z();
double y_theo = P[i].get_Y() / P[i].get_Z();
double u_theo = 0., v_theo = 0.;
vpMeterPixelConversion::convertPoint(cam, x_theo, y_theo, u_theo, v_theo);
// Adding noise to u, v
double u_noisy = u_theo + random();
double v_noisy = v_theo + random();
// Computing corresponding x, y
double x_noisy = 0., y_noisy = 0.;
vpPixelMeterConversion::convertPoint(cam, u_noisy, v_noisy, x_noisy, y_noisy);
P[i].set_x(x_noisy);
P[i].set_y(y_noisy);
pose.addPoint(P[i]); // and added to the pose computation class
std::cout << "P[" << i << "]:\n\tu_theo = " << u_theo << "\tu_noisy = " << u_noisy << std::endl;
std::cout << "\tv_theo = " << v_theo << "\tv_noisy = " << v_noisy << std::endl;
std::cout << "\tx_theo = " << x_theo << "\ty_noisy = " << x_noisy << std::endl;
std::cout << "\ty_theo = " << y_theo << "\tx_noisy = " << y_noisy << std::endl;
}
// Let's go ...
print_pose(cMo_ref, std::string("Reference pose"));
std::cout << "--------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Dementhon"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_non_planar_fail |= fail;
std::cout << "--------------------------------------------------" << std::endl;
pose.setRansacThreshold(0.01);
print_pose(cMo, std::string("Pose estimated by Ransac"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Ransac"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_non_planar_fail |= fail;
std::cout << "--------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Dementhon then Lowe"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then Lowe"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_non_planar_fail |= fail;
// Now Virtual Visual servoing
std::cout << "--------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by VVS"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_non_planar_fail |= fail;
std::cout << "-------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated by Dementhon then by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose by Dementhon then by VVS"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_non_planar_fail |= fail;
std::cout << "-------------------------------------------------" << std::endl;
print_pose(cMo, std::string("Pose estimated either by Dementhon or Lagrange then by VVS"));
fail = compare_pose(pose, cMo_ref, cMo, cam, "pose either by Dementhon or Lagrange then by VVS"
, translation3DthreshWhenNoise, rotation3DthreshWhenNoise, residual2DWhenNoise, residualPixelWhenNoise);
test_non_planar_fail |= fail;
std::cout << "-------------------------------------------------" << std::endl;
}
std::cout << "=======================================================" << std::endl;
std::cout << "Pose estimation test from planar points: " << (test_planar_fail ? "fail" : "is ok") << std::endl;
std::cout << "Pose estimation test from non-planar points: " << (test_non_planar_fail ? "fail" : "is ok")
<< std::endl;
std::cout << "Global pose estimation test: " << ((test_planar_fail | test_non_planar_fail) ? "fail" : "is ok")
<< std::endl;
return ((test_planar_fail | test_non_planar_fail) ? EXIT_FAILURE : EXIT_SUCCESS);
}
catch (const vpException &e) {
std::cout << "Catch an exception: " << e << std::endl;
return EXIT_FAILURE;
}
#else
std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
return EXIT_SUCCESS;
#endif
}
Generic class defining intrinsic camera parameters.
error that can be emitted by ViSP classes.
Definition: vpException.h:59
Class for generating random number with normal probability density.
Definition: vpGaussRand.h:116
Implementation of an homogeneous matrix and operations on such kind of matrices.
static double rad(double deg)
Definition: vpMath.h:127
static double deg(double rad)
Definition: vpMath.h:117
static void convertPoint(const vpCameraParameters &cam, const double &x, const double &y, double &u, double &v)
static void convertPoint(const vpCameraParameters &cam, const double &u, const double &v, double &x, double &y)
Implementation of a pose vector and operations on poses.
Definition: vpPoseVector.h:189
Class used for pose computation from N points (pose from point only). Some of the algorithms implemen...
Definition: vpPose.h:78
void addPoint(const vpPoint &P)
Definition: vpPose.cpp:93
void setRansacNbInliersToReachConsensus(const unsigned int &nbC)
Definition: vpPose.h:385
@ DEMENTHON
Definition: vpPose.h:84
@ LAGRANGE_LOWE
Definition: vpPose.h:89
@ RANSAC
Definition: vpPose.h:88
@ DEMENTHON_LOWE
Definition: vpPose.h:91
@ DEMENTHON_LAGRANGE_VIRTUAL_VS
Definition: vpPose.h:99
@ LAGRANGE_VIRTUAL_VS
Definition: vpPose.h:97
@ VIRTUAL_VS
Definition: vpPose.h:93
@ LAGRANGE
Definition: vpPose.h:83
@ DEMENTHON_VIRTUAL_VS
Definition: vpPose.h:95
std::list< vpPoint > listP
Array of point (use here class vpPoint)
Definition: vpPose.h:115
double computeResidual(const vpHomogeneousMatrix &cMo) const
Compute and return the sum of squared residuals expressed in meter^2 for the pose matrix cMo.
Definition: vpPose.cpp:285
bool computePose(vpPoseMethodType method, vpHomogeneousMatrix &cMo, bool(*func)(const vpHomogeneousMatrix &)=nullptr)
Definition: vpPose.cpp:333
void setRansacThreshold(const double &t)
Definition: vpPose.h:390