Visual Servoing Platform  version 3.2.0 under development (2018-12-14)
testKeyPoint-2.cpp

Test keypoint matching and pose estimation.

/****************************************************************************
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2017 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Test keypoint matching and pose estimation.
*
* Authors:
* Souriya Trinh
*
*****************************************************************************/
#include <iostream>
#include <visp3/core/vpConfig.h>
#if defined(VISP_HAVE_OPENCV) && (VISP_HAVE_OPENCV_VERSION >= 0x020301)
#include <visp3/core/vpImage.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/io/vpImageIo.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/io/vpVideoReader.h>
#include <visp3/mbt/vpMbEdgeTracker.h>
#include <visp3/vision/vpKeyPoint.h>
// List of allowed command line options
#define GETOPTARGS "cdph"
void usage(const char *name, const char *badparam);
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display);
void usage(const char *name, const char *badparam)
{
fprintf(stdout, "\n\
Test keypoints matching.\n\
\n\
SYNOPSIS\n\
%s [-c] [-d] [-p] [-h]\n", name);
fprintf(stdout, "\n\
OPTIONS: \n\
\n\
-c\n\
Disable the mouse click. Useful to automaze the \n\
execution of this program without humain intervention.\n\
\n\
-d \n\
Turn off the display.\n\
\n\
-p \n\
Use parallel RANSAC.\n\
\n\
-h\n\
Print the help.\n");
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display,
bool &use_parallel_ransac)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'c':
click_allowed = false;
break;
case 'd':
display = false;
break;
case 'p':
use_parallel_ransac = true;
break;
case 'h':
usage(argv[0], NULL);
return false;
break;
default:
usage(argv[0], optarg_);
return false;
break;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], NULL);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
int main(int argc, const char **argv)
{
try {
std::string env_ipath;
bool opt_click_allowed = true;
bool opt_display = true;
bool use_parallel_ransac = false;
// Read the command line options
if (getOptions(argc, argv, opt_click_allowed, opt_display, use_parallel_ransac) == false) {
exit(-1);
}
// Get the visp-images-data package path or VISP_INPUT_IMAGE_PATH
// environment variable value
if (env_ipath.empty()) {
std::cerr << "Please set the VISP_INPUT_IMAGE_PATH environment "
"variable value."
<< std::endl;
return -1;
}
// Set the path location of the image sequence
std::string dirname = vpIoTools::createFilePath(env_ipath, "mbt/cube");
// Build the name of the image files
std::string filenameRef = vpIoTools::createFilePath(dirname, "image0000.pgm");
vpImageIo::read(I, filenameRef);
std::string filenameCur = vpIoTools::createFilePath(dirname, "image%04d.pgm");
#if defined VISP_HAVE_X11
vpDisplayX display;
#elif defined VISP_HAVE_GTK
vpDisplayGTK display;
#elif defined VISP_HAVE_GDI
vpDisplayGDI display;
#else
vpDisplayOpenCV display;
#endif
if (opt_display) {
display.init(I, 0, 0, "ORB keypoints matching and pose estimation");
}
vpMbEdgeTracker tracker;
// Load config for tracker
std::string tracker_config_file = vpIoTools::createFilePath(env_ipath, "mbt/cube.xml");
#ifdef VISP_HAVE_XML2
tracker.loadConfigFile(tracker_config_file);
tracker.getCameraParameters(cam);
#else
vpMe me;
me.setMaskSize(5);
me.setMaskNumber(180);
me.setRange(8);
me.setThreshold(10000);
me.setMu1(0.5);
me.setMu2(0.5);
tracker.setMovingEdge(me);
cam.initPersProjWithoutDistortion(547.7367575, 542.0744058, 338.7036994, 234.5083345);
tracker.setCameraParameters(cam);
tracker.setNearClippingDistance(0.01);
tracker.setFarClippingDistance(100.0);
#endif
// Load CAO model
std::string cao_model_file = vpIoTools::createFilePath(env_ipath, "mbt/cube.cao");
tracker.loadModel(cao_model_file);
// Initialize the pose
std::string init_file = vpIoTools::createFilePath(env_ipath, "mbt/cube.init");
if (opt_display && opt_click_allowed) {
tracker.initClick(I, init_file);
} else {
vpHomogeneousMatrix cMoi(0.02044769891, 0.1101505452, 0.5078963719, 2.063603907, 1.110231561, -0.4392789872);
tracker.initFromPose(I, cMoi);
}
// Get the init pose
tracker.getPose(cMo);
// Init keypoints
vpKeyPoint keypoints("ORB", "ORB", "BruteForce-Hamming");
keypoints.setRansacParallel(use_parallel_ransac);
#if (VISP_HAVE_OPENCV_VERSION >= 0x020400)
// Bug when using LSH index with FLANN and OpenCV 2.3.1.
// see http://code.opencv.org/issues/1741 (Bug #1741)
keypoints.setMatcher("FlannBased");
#if (VISP_HAVE_OPENCV_VERSION < 0x030000)
keypoints.setDetectorParameter("ORB", "nLevels", 1);
#else
cv::Ptr<cv::ORB> orb_detector = keypoints.getDetector("ORB").dynamicCast<cv::ORB>();
if (orb_detector) {
orb_detector->setNLevels(1);
}
#endif
#endif
// Detect keypoints on the current image
std::vector<cv::KeyPoint> trainKeyPoints;
double elapsedTime;
keypoints.detect(I, trainKeyPoints, elapsedTime);
// Keep only keypoints on the cube
std::vector<vpPolygon> polygons;
std::vector<std::vector<vpPoint> > roisPt;
std::pair<std::vector<vpPolygon>, std::vector<std::vector<vpPoint> > > pair =
tracker.getPolygonFaces(true); // To detect an issue with CI
polygons = pair.first;
roisPt = pair.second;
// Compute the 3D coordinates
std::vector<cv::Point3f> points3f;
vpKeyPoint::compute3DForPointsInPolygons(cMo, cam, trainKeyPoints, polygons, roisPt, points3f);
// Build the reference keypoints
keypoints.buildReference(I, trainKeyPoints, points3f, false, 1);
// Read image 150
filenameRef = vpIoTools::createFilePath(dirname, "image0150.pgm");
vpImageIo::read(I, filenameRef);
// Init pose at image 150
cMo.buildFrom(0.02651282185, -0.03713587374, 0.6873765919, 2.314744454, 0.3492296488, -0.1226054828);
tracker.initFromPose(I, cMo);
// Detect keypoints on the image 150
keypoints.detect(I, trainKeyPoints, elapsedTime);
// Keep only keypoints on the cube
pair = tracker.getPolygonFaces(true, true,
true); // To detect an issue with CI
polygons = pair.first;
roisPt = pair.second;
// Compute the 3D coordinates
vpKeyPoint::compute3DForPointsInPolygons(cMo, cam, trainKeyPoints, polygons, roisPt, points3f);
// Build the reference keypoints
keypoints.buildReference(I, trainKeyPoints, points3f, true, 2);
// Read image 200
filenameRef = vpIoTools::createFilePath(dirname, "image0200.pgm");
vpImageIo::read(I, filenameRef);
// Init pose at image 200
cMo.buildFrom(0.02965448956, -0.07283091786, 0.7253526051, 2.300529617, -0.4286674806, 0.1788761025);
tracker.initFromPose(I, cMo);
// Detect keypoints on the image 200
keypoints.detect(I, trainKeyPoints, elapsedTime);
// Keep only keypoints on the cube
pair = tracker.getPolygonFaces(false); // To detect an issue with CI
polygons = pair.first;
roisPt = pair.second;
// Compute the 3D coordinates
vpKeyPoint::compute3DForPointsInPolygons(cMo, cam, trainKeyPoints, polygons, roisPt, points3f);
// Build the reference keypoints
keypoints.buildReference(I, trainKeyPoints, points3f, true, 3);
// Init reader for getting the input image sequence
g.setFileName(filenameCur);
g.open(I);
g.acquire(I);
#if defined VISP_HAVE_X11
vpDisplayX display2;
#elif defined VISP_HAVE_GTK
vpDisplayGTK display2;
#elif defined VISP_HAVE_GDI
vpDisplayGDI display2;
#else
vpDisplayOpenCV display2;
#endif
keypoints.createImageMatching(I, IMatching);
if (opt_display) {
display2.init(IMatching, 0, (int)I.getHeight() / vpDisplay::getDownScalingFactor(I) + 80, "IMatching");
}
bool opt_click = false;
double error;
std::vector<double> times_vec;
while ((opt_display && !g.end()) || (!opt_display && g.getFrameIndex() < 30)) {
g.acquire(I);
if (opt_display) {
// Display image matching
keypoints.insertImageMatching(I, IMatching);
vpDisplay::display(IMatching);
}
// Match keypoints and estimate the pose
if (keypoints.matchPoint(I, cam, cMo, error, elapsedTime)) {
times_vec.push_back(elapsedTime);
tracker.setCameraParameters(cam);
tracker.setPose(I, cMo);
if (opt_display) {
tracker.display(I, cMo, cam, vpColor::red, 2);
vpDisplay::displayFrame(I, cMo, cam, 0.025, vpColor::none, 3);
std::vector<vpImagePoint> ransacInliers = keypoints.getRansacInliers();
std::vector<vpImagePoint> ransacOutliers = keypoints.getRansacOutliers();
for (std::vector<vpImagePoint>::const_iterator it = ransacInliers.begin(); it != ransacInliers.end(); ++it) {
vpImagePoint imPt(*it);
imPt.set_u(imPt.get_u() + I.getWidth());
imPt.set_v(imPt.get_v() + I.getHeight());
}
for (std::vector<vpImagePoint>::const_iterator it = ransacOutliers.begin(); it != ransacOutliers.end();
++it) {
vpImagePoint imPt(*it);
imPt.set_u(imPt.get_u() + I.getWidth());
imPt.set_v(imPt.get_v() + I.getHeight());
vpDisplay::displayCircle(IMatching, imPt, 4, vpColor::red);
}
keypoints.displayMatching(I, IMatching);
// Display model in the correct sub-image in IMatching
cam2.initPersProjWithoutDistortion(cam.get_px(), cam.get_py(), cam.get_u0() + I.getWidth(),
cam.get_v0() + I.getHeight());
tracker.setCameraParameters(cam2);
tracker.setPose(IMatching, cMo);
tracker.display(IMatching, cMo, cam2, vpColor::red, 2);
vpDisplay::displayFrame(IMatching, cMo, cam2, 0.025, vpColor::none, 3);
}
}
if (opt_display) {
vpDisplay::flush(IMatching);
}
if (opt_click_allowed && opt_display) {
// Click requested to process next image
if (opt_click) {
vpDisplay::getClick(I, button, true);
if (button == vpMouseButton::button3) {
opt_click = false;
}
} else {
// Use right click to enable/disable step by step tracking
if (vpDisplay::getClick(I, button, false)) {
if (button == vpMouseButton::button3) {
opt_click = true;
} else if (button == vpMouseButton::button1) {
break;
}
}
}
}
}
if (!times_vec.empty()) {
std::cout << "Computation time, Mean: " << vpMath::getMean(times_vec)
<< " ms ; Median: " << vpMath::getMedian(times_vec)
<< " ms ; Std: " << vpMath::getStdev(times_vec) << std::endl;
}
} catch (const vpException &e) {
std::cerr << e.what() << std::endl;
return -1;
}
std::cout << "testKeyPoint-2 is ok !" << std::endl;
return 0;
}
#else
int main()
{
std::cerr << "You need OpenCV library." << std::endl;
return 0;
}
#endif