Visual Servoing Platform  version 3.6.1 under development (2024-04-25)
testFeatureSegment.cpp

Shows how to build a task with a segment visual feature.

/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2023 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Visual feature manipulation (segment).
*
*****************************************************************************/
#include <fstream>
#include <iostream>
#include <numeric>
#include <vector>
#include <visp3/core/vpConfig.h>
#if defined(VISP_HAVE_MODULE_ROBOT) && \
(defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpDisplay.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpPoint.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpPlot.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeatureSegment.h>
#include <visp3/vs/vpServo.h> //visual servoing task
int main(int argc, const char **argv)
{
try {
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
int opt_no_display = 0;
int opt_curves = 1;
#endif
int opt_normalized = 1;
// Parse the command line to set the variables
vpParseArgv::vpArgvInfo argTable [] = {
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
{"-d", vpParseArgv::ARGV_CONSTANT_INT, 0, (char *)&opt_no_display, "Disable display and graphics viewer."},
#endif
{"-normalized", vpParseArgv::ARGV_INT, (char *)nullptr, (char *)&opt_normalized,
"1 to use normalized features, 0 for non normalized."},
{"-h", vpParseArgv::ARGV_HELP, (char *)nullptr, (char *)nullptr, "Print the help."},
{(char *)nullptr, vpParseArgv::ARGV_END, (char *)nullptr, (char *)nullptr, (char *)nullptr}
};
// Read the command line options
if (vpParseArgv::parse(&argc, argv, argTable,
return (false);
}
std::cout << "Used options: " << std::endl;
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
opt_curves = (opt_no_display == 0) ? 1 : 0;
std::cout << " - no display: " << opt_no_display << std::endl;
std::cout << " - curves : " << opt_curves << std::endl;
#endif
std::cout << " - normalized: " << opt_normalized << std::endl;
vpCameraParameters cam(640., 480., 320., 240.);
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI)
vpDisplay *display = nullptr;
if (!opt_no_display) {
#if defined(VISP_HAVE_X11)
#elif defined(VISP_HAVE_GDI)
#endif
}
#endif
vpImage<unsigned char> I(480, 640, 0);
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
if (!opt_no_display)
display->init(I);
#endif
vpHomogeneousMatrix wMo; // Set to identity. Robot world frame is equal to object frame
vpHomogeneousMatrix cMo(-0.5, 0.5, 2., vpMath::rad(10), vpMath::rad(20), vpMath::rad(30));
vpHomogeneousMatrix wMc; // Camera location in the robot world frame
vpPoint P[4]; // 4 points in the object frame
P[0].setWorldCoordinates(.1, .1, 0.);
P[1].setWorldCoordinates(-.1, .1, 0.);
P[2].setWorldCoordinates(-.1, -.1, 0.);
P[3].setWorldCoordinates(.1, -.1, 0.);
vpPoint Pd[4]; // 4 points in the desired camera frame
for (int i = 0; i < 4; i++) {
Pd[i] = P[i];
Pd[i].project(cdMo);
}
vpPoint Pc[4]; // 4 points in the current camera frame
for (int i = 0; i < 4; i++) {
Pc[i] = P[i];
Pc[i].project(cMo);
}
vpFeatureSegment seg_cur[2], seg_des[2]; // Current and desired features
for (int i = 0; i < 2; i++) {
if (opt_normalized) {
seg_cur[i].setNormalized(true);
seg_des[i].setNormalized(true);
}
else {
seg_cur[i].setNormalized(false);
seg_des[i].setNormalized(false);
}
vpFeatureBuilder::create(seg_cur[i], Pc[i * 2], Pc[i * 2 + 1]);
vpFeatureBuilder::create(seg_des[i], Pd[i * 2], Pd[i * 2 + 1]);
seg_cur[i].print();
seg_des[i].print();
}
// define visual servoing task
vpServo task;
task.setLambda(2.);
for (int i = 0; i < 2; i++)
task.addFeature(seg_cur[i], seg_des[i]);
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
if (!opt_no_display) {
for (int i = 0; i < 2; i++) {
seg_cur[i].display(cam, I, vpColor::red);
seg_des[i].display(cam, I, vpColor::green);
}
}
#endif
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
vpPlot *graph = nullptr;
if (opt_curves) {
// Create a window (700 by 700) at position (100, 200) with two graphics
graph = new vpPlot(2, 500, 500, 700, 10, "Curves...");
// The first graphic contains 3 curve and the second graphic contains 3
// curves
graph->initGraph(0, 6);
graph->initGraph(1, 8);
// graph->setTitle(0, "Velocities");
// graph->setTitle(1, "Error s-s*");
}
#endif
// param robot
float sampling_time = 0.02f; // Sampling period in seconds
robot.setSamplingTime(sampling_time);
wMc = wMo * cMo.inverse();
robot.setPosition(wMc);
int iter = 0;
do {
double t = vpTime::measureTimeMs();
wMc = robot.getPosition();
cMo = wMc.inverse() * wMo;
for (int i = 0; i < 4; i++)
Pc[i].project(cMo);
for (int i = 0; i < 2; i++)
vpFeatureBuilder::create(seg_cur[i], Pc[i * 2], Pc[i * 2 + 1]);
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
if (!opt_no_display) {
for (int i = 0; i < 2; i++) {
seg_cur[i].display(cam, I, vpColor::red);
seg_des[i].display(cam, I, vpColor::green);
}
}
#endif
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
if (opt_curves) {
graph->plot(0, iter, v); // plot velocities applied to the robot
graph->plot(1, iter, task.getError()); // plot error vector
}
#endif
vpTime::wait(t, sampling_time * 1000); // Wait 10 ms
iter++;
} while ((task.getError()).sumSquare() > 0.0005);
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
if (graph != nullptr)
delete graph;
#endif
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
if (!opt_no_display && display != nullptr)
delete display;
#endif
std::cout << "final error=" << (task.getError()).sumSquare() << std::endl;
return EXIT_SUCCESS;
}
catch (const vpException &e) {
std::cout << "Catch an exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#elif !(defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
int main()
{
std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
return EXIT_SUCCESS;
}
#else
int main()
{
std::cout << "Test empty since visp_robot module is not available.\n" << std::endl;
return EXIT_SUCCESS;
}
#endif
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:163
static const vpColor red
Definition: vpColor.h:211
static const vpColor green
Definition: vpColor.h:214
Display for windows using GDI (available on any windows 32 platform).
Definition: vpDisplayGDI.h:128
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:128
Class that defines generic functionalities for display.
Definition: vpDisplay.h:173
static void display(const vpImage< unsigned char > &I)
static void flush(const vpImage< unsigned char > &I)
error that can be emitted by ViSP classes.
Definition: vpException.h:59
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 2D segment visual features. This class allow to consider two sets of visual feat...
void print(unsigned int select=FEATURE_ALL) const vp_override
void display(const vpCameraParameters &cam, const vpImage< unsigned char > &I, const vpColor &color=vpColor::green, unsigned int thickness=1) const vp_override
void setNormalized(bool normalized)
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
static double rad(double deg)
Definition: vpMath.h:127
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
@ ARGV_NO_DEFAULTS
No default options like -help.
Definition: vpParseArgv.h:168
@ ARGV_NO_LEFTOVERS
Print an error message if an option is not in the argument list.
Definition: vpParseArgv.h:169
@ ARGV_INT
Argument is associated to an int.
Definition: vpParseArgv.h:152
@ ARGV_CONSTANT_INT
Stand alone argument associated to an int var that is set to 1.
Definition: vpParseArgv.h:150
@ ARGV_END
End of the argument list.
Definition: vpParseArgv.h:161
@ ARGV_HELP
Argument is for help displaying.
Definition: vpParseArgv.h:160
This class enables real time drawing of 2D or 3D graphics. An instance of the class open a window whi...
Definition: vpPlot.h:109
void initGraph(unsigned int graphNum, unsigned int curveNbr)
Definition: vpPlot.cpp:202
void plot(unsigned int graphNum, unsigned int curveNum, double x, double y)
Definition: vpPlot.cpp:269
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:77
void setWorldCoordinates(double oX, double oY, double oZ)
Definition: vpPoint.cpp:110
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) vp_override
@ CAMERA_FRAME
Definition: vpRobot.h:82
void setMaxRotationVelocity(double maxVr)
Definition: vpRobot.cpp:257
void setMaxTranslationVelocity(double maxVt)
Definition: vpRobot.cpp:236
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:378
@ EYEINHAND_CAMERA
Definition: vpServo.h:155
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:329
void setLambda(double c)
Definition: vpServo.h:976
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:132
vpColVector getError() const
Definition: vpServo.h:504
vpColVector computeControlLaw()
Definition: vpServo.cpp:703
@ CURRENT
Definition: vpServo.h:196
Class that defines the simplest robot: a free flying camera.
void display(vpImage< unsigned char > &I, const std::string &title)
Display a gray-scale image.
VISP_EXPORT int wait(double t0, double t)
VISP_EXPORT double measureTimeMs()