Visual Servoing Platform  version 3.2.0 under development (2018-10-20)
testFeatureSegment.cpp

Shows how to build a task with a segment visual feature.

/****************************************************************************
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2017 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Visual feature manipulation (segment).
*
* Author:
* Filip Novotny
*
*****************************************************************************/
#include <fstream>
#include <iostream>
#include <numeric>
#include <vector>
#include <visp3/core/vpConfig.h>
#ifdef VISP_HAVE_MODULE_ROBOT
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpDisplay.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpPoint.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpPlot.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeatureSegment.h>
#include <visp3/vs/vpServo.h> //visual servoing task
int main(int argc, const char **argv)
{
try {
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
int opt_no_display = 0;
int opt_curves = 1;
#endif
int opt_normalized = 1;
// Parse the command line to set the variables
vpParseArgv::vpArgvInfo argTable[] = {
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
{"-d", vpParseArgv::ARGV_CONSTANT_INT, 0, (char *)&opt_no_display, "Disable display and graphics viewer."},
#endif
{"-normalized", vpParseArgv::ARGV_INT, (char *)NULL, (char *)&opt_normalized,
"1 to use normalized features, 0 for non normalized."},
{"-h", vpParseArgv::ARGV_HELP, (char *)NULL, (char *)NULL, "Print the help."},
{(char *)NULL, vpParseArgv::ARGV_END, (char *)NULL, (char *)NULL, (char *)NULL}
};
// Read the command line options
if (vpParseArgv::parse(&argc, argv, argTable,
return (false);
}
std::cout << "Used options: " << std::endl;
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
opt_curves = (opt_no_display == 0) ? 1 : 0;
std::cout << " - no display: " << opt_no_display << std::endl;
std::cout << " - curves : " << opt_curves << std::endl;
#endif
std::cout << " - normalized: " << opt_normalized << std::endl;
vpCameraParameters cam(640., 480., 320., 240.);
#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI)
vpDisplay *display = NULL;
if (!opt_no_display) {
#if defined(VISP_HAVE_X11)
display = new vpDisplayX;
#elif defined VISP_HAVE_GDI
display = new vpDisplayGDI;
#endif
}
#endif
vpImage<unsigned char> I(480, 640, 0);
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
if (!opt_no_display)
display->init(I);
#endif
vpHomogeneousMatrix wMo; // Set to indentity. Robot world frame is equal to object frame
vpHomogeneousMatrix cMo(-0.5, 0.5, 2., vpMath::rad(10), vpMath::rad(20), vpMath::rad(30));
vpHomogeneousMatrix wMc; // Camera location in the robot world frame
vpPoint P[4]; // 4 points in the object frame
P[0].setWorldCoordinates(.1, .1, 0.);
P[1].setWorldCoordinates(-.1, .1, 0.);
P[2].setWorldCoordinates(-.1, -.1, 0.);
P[3].setWorldCoordinates(.1, -.1, 0.);
vpPoint Pd[4]; // 4 points in the desired camera frame
for (int i = 0; i < 4; i++) {
Pd[i] = P[i];
Pd[i].project(cdMo);
}
vpPoint Pc[4]; // 4 points in the current camera frame
for (int i = 0; i < 4; i++) {
Pc[i] = P[i];
Pc[i].project(cMo);
}
vpFeatureSegment seg_cur[2], seg_des[2]; // Current and desired features
for (int i = 0; i < 2; i++) {
if (opt_normalized) {
seg_cur[i].setNormalized(true);
seg_des[i].setNormalized(true);
} else {
seg_cur[i].setNormalized(false);
seg_des[i].setNormalized(false);
}
vpFeatureBuilder::create(seg_cur[i], Pc[i * 2], Pc[i * 2 + 1]);
vpFeatureBuilder::create(seg_des[i], Pd[i * 2], Pd[i * 2 + 1]);
seg_cur[i].print();
seg_des[i].print();
}
// define visual servoing task
vpServo task;
task.setLambda(2.);
for (int i = 0; i < 2; i++)
task.addFeature(seg_cur[i], seg_des[i]);
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
if (!opt_no_display) {
for (int i = 0; i < 2; i++) {
seg_cur[i].display(cam, I, vpColor::red);
seg_des[i].display(cam, I, vpColor::green);
}
}
#endif
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
vpPlot *graph = NULL;
if (opt_curves) {
// Create a window (700 by 700) at position (100, 200) with two graphics
graph = new vpPlot(2, 500, 500, 700, 10, "Curves...");
// The first graphic contains 3 curve and the second graphic contains 3
// curves
graph->initGraph(0, 6);
graph->initGraph(1, 8);
// graph->setTitle(0, "Velocities");
// graph->setTitle(1, "Error s-s*");
}
#endif
// param robot
float sampling_time = 0.02f; // Sampling period in seconds
robot.setSamplingTime(sampling_time);
wMc = wMo * cMo.inverse();
robot.setPosition(wMc);
int iter = 0;
do {
double t = vpTime::measureTimeMs();
wMc = robot.getPosition();
cMo = wMc.inverse() * wMo;
for (int i = 0; i < 4; i++)
Pc[i].project(cMo);
for (int i = 0; i < 2; i++)
vpFeatureBuilder::create(seg_cur[i], Pc[i * 2], Pc[i * 2 + 1]);
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
if (!opt_no_display) {
for (int i = 0; i < 2; i++) {
seg_cur[i].display(cam, I, vpColor::red);
seg_des[i].display(cam, I, vpColor::green);
}
}
#endif
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
if (opt_curves) {
graph->plot(0, iter, v); // plot velocities applied to the robot
graph->plot(1, iter, task.getError()); // plot error vector
}
#endif
vpTime::wait(t, sampling_time * 1000); // Wait 10 ms
iter++;
} while ((task.getError()).sumSquare() > 0.0005);
// A call to kill() is requested here to destroy properly the current
// and desired feature lists.
task.kill();
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
if (graph != NULL)
delete graph;
#endif
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
if (!opt_no_display && display != NULL)
delete display;
#endif
std::cout << "final error=" << (task.getError()).sumSquare() << std::endl;
return 0;
} catch (const vpException &e) {
std::cout << "Catch an exception: " << e << std::endl;
return 1;
}
}
#else
int main()
{
std::cout << "Test empty since visp_robot module is not available.\n" << std::endl;
return 0;
}
#endif