Visual Servoing Platform  version 3.2.0 under development (2018-08-16)
testConversion.cpp

Manipulation of image conversions.

/****************************************************************************
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2017 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Test for image conversions.
*
* Authors:
* Fabien Spindler
*
*****************************************************************************/
#include <iomanip>
#include <stdlib.h>
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpDebug.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpImageConvert.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpTime.h>
#include <visp3/io/vpImageIo.h>
#include <visp3/io/vpParseArgv.h>
// List of allowed command line options
#define GETOPTARGS "cdi:o:n:h"
/*
Print the program options.
\param name : Program name.
\param badparam : Bad parameter name.
\param ipath: Input image path.
\param opath : Output image path.
\param user : Username.
\param nbiter : Iteration number.
*/
void usage(const char *name, const char *badparam, std::string ipath, std::string opath, std::string user, int nbiter)
{
fprintf(stdout, "\n\
Test image conversions.\n\
\n\
SYNOPSIS\n\
%s [-i <input image path>] [-o <output image path>] [-n <nb benchmark iterations>]\n\
[-h]\n \
", name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
-i <input image path> %s\n\
Set image input path.\n\
From this path read \"Klimt/Klimt.pgm\"\n\
and \"Klimt/Klimt.ppm\" images.\n\
Setting the VISP_INPUT_IMAGE_PATH environment\n\
variable produces the same behaviour than using\n\
this option.\n\
\n\
-o <output image path> %s\n\
Set image output path.\n\
From this directory, creates the \"%s\"\n\
subdirectory depending on the username, where \n\
Klimt_grey.pgm and Klimt_color.ppm output images\n\
are written.\n\
\n\
-n <nb benchmark iterations> %d\n\
Set the number of benchmark iterations.\n\
\n\
-h\n\
Print the help.\n\n", ipath.c_str(), opath.c_str(), user.c_str(), nbiter);
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, std::string &ipath, std::string &opath, const std::string &user,
int &nbIterations)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'i':
ipath = optarg_;
break;
case 'o':
opath = optarg_;
break;
case 'n':
nbIterations = atoi(optarg_);
break;
case 'h':
usage(argv[0], NULL, ipath, opath, user, nbIterations);
return false;
break;
case 'c':
case 'd':
break;
default:
usage(argv[0], optarg_, ipath, opath, user, nbIterations);
return false;
break;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], NULL, ipath, opath, user, nbIterations);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
void computeRegularRGBaToGrayscale(const unsigned char *rgba, unsigned char *grey, unsigned int size)
{
const unsigned char *pt_input = rgba;
const unsigned char *pt_end = rgba + size * 4;
unsigned char *pt_output = grey;
while (pt_input != pt_end) {
*pt_output = (unsigned char)(0.2126 * (*pt_input) + 0.7152 * (*(pt_input + 1)) + 0.0722 * (*(pt_input + 2)));
pt_input += 4;
pt_output++;
}
}
void computeRegularRGBToGrayscale(const unsigned char *rgb, unsigned char *grey, unsigned int size)
{
const unsigned char *pt_input = rgb;
const unsigned char *pt_end = rgb + size * 3;
unsigned char *pt_output = grey;
while (pt_input != pt_end) {
*pt_output = (unsigned char)(0.2126 * (*pt_input) + 0.7152 * (*(pt_input + 1)) + 0.0722 * (*(pt_input + 2)));
pt_input += 3;
pt_output++;
}
}
void computeRegularBGRToGrayscale(unsigned char *bgr, unsigned char *grey, unsigned int width, unsigned int height,
bool flip)
{
// if we have to flip the image, we start from the end last scanline so the
// step is negative
int lineStep = (flip) ? -(int)(width * 3) : (int)(width * 3);
// starting source address = last line if we need to flip the image
unsigned char *src = (flip) ? bgr + (width * height * 3) + lineStep : bgr;
unsigned int j = 0;
unsigned int i = 0;
for (i = 0; i < height; i++) {
unsigned char *line = src;
for (j = 0; j < width; j++) {
*grey++ = (unsigned char)(0.2126 * *(line + 2) + 0.7152 * *(line + 1) + 0.0722 * *(line + 0));
line += 3;
}
// go to the next line
src += lineStep;
}
}
#if (VISP_HAVE_OPENCV_VERSION >= 0x020101)
void computeRegularBGRToGrayscale(const cv::Mat &src, vpImage<unsigned char> &dest)
{
if (src.type() == CV_8UC3) {
dest.resize((unsigned int)src.rows, (unsigned int)src.cols);
if (src.isContinuous()) {
computeRegularBGRToGrayscale((unsigned char *)src.data, (unsigned char *)dest.bitmap, (unsigned int)src.cols,
(unsigned int)src.rows, false);
}
}
}
#endif
int main(int argc, const char **argv)
{
try {
std::string env_ipath;
std::string opt_ipath;
std::string opt_opath;
std::string ipath;
std::string opath;
std::string filename;
std::string username;
int nbIterations = 1;
// Get the visp-images-data package path or VISP_INPUT_IMAGE_PATH
// environment variable value
// Set the default input path
if (!env_ipath.empty())
ipath = env_ipath;
// Set the default output path
#if defined(_WIN32)
opt_opath = "C:/temp";
#else
opt_opath = "/tmp";
#endif
// Get the user login name
// Read the command line options
if (getOptions(argc, argv, opt_ipath, opt_opath, username, nbIterations) == false) {
exit(-1);
}
// Get the option values
if (!opt_ipath.empty())
ipath = opt_ipath;
if (!opt_opath.empty())
opath = opt_opath;
// Append to the output path string, the login name of the user
opath = vpIoTools::createFilePath(opath, username);
// Test if the output path exist. If no try to create it
if (vpIoTools::checkDirectory(opath) == false) {
try {
// Create the dirname
} catch (...) {
usage(argv[0], NULL, ipath, opt_opath, username, nbIterations);
std::cerr << std::endl << "ERROR:" << std::endl;
std::cerr << " Cannot create " << opath << std::endl;
std::cerr << " Check your -o " << opt_opath << " option " << std::endl;
exit(-1);
}
}
// Compare ipath and env_ipath. If they differ, we take into account
// the input path comming from the command line option
if (opt_ipath.empty()) {
if (ipath != env_ipath) {
std::cout << std::endl << "WARNING: " << std::endl;
std::cout << " Since -i <visp image path=" << ipath << "> "
<< " is different from VISP_IMAGE_PATH=" << env_ipath << std::endl
<< " we skip the environment variable." << std::endl;
}
}
// Test if an input path is set
if (opt_ipath.empty() && env_ipath.empty()) {
usage(argv[0], NULL, ipath, opt_opath, username, nbIterations);
std::cerr << std::endl << "ERROR:" << std::endl;
std::cerr << " Use -i <visp image path> option or set VISP_INPUT_IMAGE_PATH " << std::endl
<< " environment variable to specify the location of the " << std::endl
<< " image path where test images are located." << std::endl
<< std::endl;
exit(-1);
}
//
// Here starts really the test
//
vpImage<unsigned char> Ig; // Grey image
vpImage<vpRGBa> Ic; // Color image
//-------------------- .pgm -> .ppm
std::cout << "** Convert a grey image (.pgm) to a color image (.ppm)" << std::endl;
// Load a grey image from the disk
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.pgm");
std::cout << " Load " << filename << std::endl;
vpImageIo::read(Ig, filename);
// Create a color image from the grey
filename = vpIoTools::createFilePath(opath, "Klimt_color.ppm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(Ic, filename);
//-------------------- .ppm -> .pgm
std::cout << "** Convert a color image (.ppm) to a grey image (.pgm)" << std::endl;
// Load a color image from the disk
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.ppm");
std::cout << " Load " << filename << std::endl;
vpImageIo::read(Ic, filename);
// Create a grey image from the color
filename = vpIoTools::createFilePath(opath, "Klimt_grey.pgm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(Ig, filename);
//-------------------- YUV -> RGB
std::cout << "** Convert YUV pixel value to a RGB value" << std::endl;
unsigned char y = 187, u = 10, v = 30;
unsigned char r, g, b;
// Convert a YUV pixel value to a RGB value
vpImageConvert::YUVToRGB(y, u, v, r, g, b);
std::cout << " y(" << (int)y << ") u(" << (int)u << ") v(" << (int)v << ") = r(" << (int)r << ") g(" << (int)g
<< ") b(" << (int)b << ")" << std::endl;
#ifdef VISP_HAVE_OPENCV
#if VISP_HAVE_OPENCV_VERSION < 0x020408
double t0 = vpTime::measureTimeMs();
// Convert a IplImage to a vpImage<vpRGBa>
std::cout << "** Convert an IplImage to a vpImage<vpRGBa>" << std::endl;
IplImage *image = NULL;
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.ppm");
/* Read the color image */
std::cout << " Reading the color image with opencv: " << filename << std::endl;
if ((image = cvLoadImage(filename.c_str(), CV_LOAD_IMAGE_COLOR)) == NULL) {
std::cout << " Cannot read image: " << filename << std::endl;
return (-1);
}
filename = vpIoTools::createFilePath(opath, "Klimt_color_cv.ppm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(Ic, filename);
std::cout << " Convert result in " << filename << std::endl;
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.pgm");
/* Read the pgm image */
std::cout << " Reading the greyscale image with opencv: " << filename << std::endl;
if (image != NULL)
cvReleaseImage(&image);
if ((image = cvLoadImage(filename.c_str(), CV_LOAD_IMAGE_GRAYSCALE)) == NULL) {
std::cout << " Cannot read image: " << filename << std::endl;
return (-1);
}
filename = vpIoTools::createFilePath(opath, "Klimt_grey_cv.ppm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(Ic, filename);
std::cout << " Convert result in " << filename << std::endl;
// Convert a IplImage to a vpImage<unsigned char>
std::cout << "** Convert an IplImage to a vpImage<unsigned char>" << std::endl;
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.ppm");
/* Read the color image */
std::cout << " Reading the color image with opencv: " << filename << std::endl;
if (image != NULL)
cvReleaseImage(&image);
if ((image = cvLoadImage(filename.c_str(), CV_LOAD_IMAGE_COLOR)) == NULL) {
std::cout << " Cannot read image: " << filename << std::endl;
return (-1);
}
filename = vpIoTools::createFilePath(opath, "Klimt_color_cv.pgm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(Ig, filename);
std::cout << " Convert result in " << filename << std::endl;
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.pgm");
/* Read the pgm image */
std::cout << " Reading the greyscale image with opencv: " << filename << std::endl;
if (image != NULL)
cvReleaseImage(&image);
if ((image = cvLoadImage(filename.c_str(), CV_LOAD_IMAGE_GRAYSCALE)) == NULL) {
std::cout << " Cannot read image: " << filename << std::endl;
return (-1);
}
filename = vpIoTools::createFilePath(opath, "Klimt_grey_cv.pgm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(Ig, filename);
std::cout << " Convert result in " << filename << std::endl;
// Convert a vpImage<vpRGBa> to a IplImage
std::cout << "** Convert a vpImage<vpRGBa> to an IplImage" << std::endl;
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.ppm");
/* Read the color image */
// Load a color image from the disk
std::cout << " Load " << filename << std::endl;
vpImageIo::read(Ic, filename);
filename = vpIoTools::createFilePath(opath, "Klimt_ipl_color_cv.ppm");
/* Save the the current image */
std::cout << " Write " << filename << std::endl;
if ((cvSaveImage(filename.c_str(), image)) == 0) {
std::cout << " Cannot write image: " << filename << std::endl;
if (image != NULL)
cvReleaseImage(&image);
return (-1);
}
std::cout << " Convert result in " << filename << std::endl;
// Convert a vpImage<unsigned char> to an IplImage
std::cout << "** Convert a vpImage<unsigned char> to an IplImage" << std::endl;
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.pgm");
/* Read the grey image */
// Load a color image from the disk
std::cout << " Load " << filename << std::endl;
vpImageIo::read(Ig, filename);
filename = vpIoTools::createFilePath(opath, "Klimt_ipl_grey_cv.pgm");
/* Save the the current image */
std::cout << " Write " << filename << std::endl;
if ((cvSaveImage(filename.c_str(), image)) == 0) {
std::cout << " Cannot write image: " << std::endl << filename << std::endl;
if (image != NULL)
cvReleaseImage(&image);
return (-1);
}
std::cout << " Convert result in " << filename << std::endl;
if (image != NULL)
cvReleaseImage(&image);
double t1 = vpTime::measureTimeMs();
std::cout << "== Conversion c interface : " << t1 - t0 << " ms" << std::endl;
#endif
/* ------------------------------------------------------------------------ */
/* conversion for the new c++ interface */
/* ------------------------------------------------------------------------ */
#if VISP_HAVE_OPENCV_VERSION >= 0x020100
double t2 = vpTime::measureTimeMs();
// Convert a cv::Mat to a vpImage<vpRGBa>
std::cout << "** Convert a cv::Mat to a vpImage<vpRGBa>" << std::endl;
cv::Mat imageMat;
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.ppm");
std::cout << " Reading the color image with c++ interface of opencv: " << filename << std::endl;
imageMat = cv::imread(filename, 1); // force to a three channel color image.
if (imageMat.data == NULL) {
std::cout << " Cannot read image: " << filename << std::endl;
return -1;
}
vpImageConvert::convert(imageMat, Ic);
filename = vpIoTools::createFilePath(opath, "Klimt_color_cvMat.ppm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(Ic, filename);
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.pgm");
/* Read the pgm image */
std::cout << " Reading the greyscale image with opencv: " << filename << std::endl;
imageMat = cv::imread(filename, 0); // forced to grayscale.
if (imageMat.data == NULL) {
std::cout << " Cannot read image: " << filename << std::endl;
return (-1);
}
vpImageConvert::convert(imageMat, Ic);
filename = vpIoTools::createFilePath(opath, "Klimt_grey_cvMat.ppm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(Ic, filename);
// Convert a cv::Mat to a vpImage<unsigned char>
std::cout << "** Convert a cv::Mat to a vpImage<nsigned char>" << std::endl;
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.ppm");
/* Read the color image */
std::cout << " Reading the color image with opencv: " << filename << std::endl;
imageMat = cv::imread(filename, 1); // force to a three channel color image.
if (imageMat.data == NULL) {
std::cout << " Cannot read image: " << filename << std::endl;
return -1;
}
vpImageConvert::convert(imageMat, Ig);
filename = vpIoTools::createFilePath(opath, "Klimt_color_cvMat.pgm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(Ig, filename);
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.pgm");
/* Read the pgm image */
std::cout << " Reading the greyscale image with opencv: " << filename << std::endl;
imageMat = cv::imread(filename, 0);
if (imageMat.data == NULL) {
std::cout << " Cannot read image: " << filename << std::endl;
return (-1);
}
vpImageConvert::convert(imageMat, Ig);
filename = vpIoTools::createFilePath(opath, "Klimt_grey_cvMat.pgm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(Ig, filename);
std::cout << " Convert result in " << filename << std::endl;
// Convert a vpImage<vpRGBa> to a cv::Mat
std::cout << "** Convert a vpImage<vpRGBa> to a cv::Mat" << std::endl;
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.ppm");
/* Read the color image */
// Load a color image from the disk
std::cout << " Load " << filename << std::endl;
vpImageIo::read(Ic, filename);
vpImageConvert::convert(Ic, imageMat);
filename = vpIoTools::createFilePath(opath, "Klimt_ipl_color_cvMat.ppm");
/* Save the the current image */
std::cout << " Resulting image saved in: " << filename << std::endl;
if (!cv::imwrite(filename, imageMat)) {
std::cout << " Cannot write image: " << filename << std::endl;
return (-1);
}
std::cout << " Convert result in " << filename << std::endl;
// Convert a vpImage<unsigned char> to a cv::Mat
std::cout << "** Convert a vpImage<unsigned char> to a cv::Mat" << std::endl;
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.pgm");
/* Read the grey image */
// Load a color image from the disk
std::cout << " Load " << filename << std::endl;
vpImageIo::read(Ig, filename);
vpImageConvert::convert(Ig, imageMat);
filename = vpIoTools::createFilePath(opath, "Klimt_ipl_grey_cvMat.pgm");
/* Save the the current image */
std::cout << " Resulting image saved in: " << filename << std::endl;
if (!cv::imwrite(filename, imageMat)) {
std::cout << " Cannot write image: " << filename << std::endl;
return (-1);
}
std::cout << " Convert result in " << filename << std::endl;
double t3 = vpTime::measureTimeMs();
std::cout << "== Conversion c++ interface : " << t3 - t2 << " ms" << std::endl;
#endif
#endif
// Split a vpImage<vpRGBa> to vpImage<unsigned char>
std::cout << "** Split a vpImage<vpRGBa> to vpImage<unsigned char>" << std::endl;
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.ppm");
/* Read the color image */
// Load a color image from the disk
std::cout << " Load " << filename << std::endl;
vpImageIo::read(Ic, filename);
vpImageConvert::split(Ic, &R, NULL, &B);
double begintime = vpTime::measureTimeMs();
for (int iteration = 0; iteration < nbIterations; iteration++) {
vpImageConvert::split(Ic, &R, NULL, &B);
}
double endtime = vpTime::measureTimeMs();
std::cout << " Time for " << nbIterations << " split (ms): " << endtime - begintime << std::endl;
filename = vpIoTools::createFilePath(opath, "Klimt_RChannel.pgm");
/* Save the the current image */
std::cout << " Save Klimt R channel: " << filename << std::endl;
vpImageIo::write(R, filename);
filename = vpIoTools::createFilePath(opath, "Klimt_BChannel.pgm");
/* Save the the current image */
std::cout << " Save Klimt B channel: " << filename << std::endl;
vpImageIo::write(B, filename);
// Merge 4 vpImage<unsigned char> (RGBa) to vpImage<vpRGBa>
std::cout << "** Merge 4 vpImage<unsigned char> (RGBa) to vpImage<vpRGBa>" << std::endl;
vpImageConvert::split(Ic, &R, &G, &B, &a);
begintime = vpTime::measureTimeMs();
vpImage<vpRGBa> I_merge;
for (int iteration = 0; iteration < nbIterations; iteration++) {
vpImageConvert::merge(&R, &G, &B, &a, I_merge);
}
endtime = vpTime::measureTimeMs();
std::cout << " Time for 1000 merge (ms): " << endtime - begintime << std::endl;
filename = vpIoTools::createFilePath(opath, "Klimt_merge.ppm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(I_merge, filename);
// Convert a vpImage<vpRGBa> in RGB color space to a vpImage<vpRGBa> in
// HSV color
std::cout << "** Convert a vpImage<vpRGBa> in RGB color space to a "
"vpImage<vpRGBa> in HSV color"
<< std::endl;
unsigned int size = Ic.getSize();
unsigned int w = Ic.getWidth(), h = Ic.getHeight();
unsigned char *hue = new unsigned char[size];
unsigned char *saturation = new unsigned char[size];
unsigned char *value = new unsigned char[size];
vpImageConvert::RGBaToHSV((unsigned char *)Ic.bitmap, hue, saturation, value, size);
vpImage<unsigned char> I_hue(hue, h, w);
vpImage<unsigned char> I_saturation(saturation, h, w);
vpImage<unsigned char> I_value(value, h, w);
vpImageConvert::merge(&I_hue, &I_saturation, &I_value, NULL, I_HSV);
filename = vpIoTools::createFilePath(opath, "Klimt_HSV.ppm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(I_HSV, filename);
// Check the conversion RGBa <==> HSV
double *hue2 = new double[size];
double *saturation2 = new double[size];
double *value2 = new double[size];
vpImageConvert::RGBaToHSV((unsigned char *)Ic.bitmap, hue2, saturation2, value2, size);
unsigned char *rgba = new unsigned char[size * 4];
vpImageConvert::HSVToRGBa(hue2, saturation2, value2, rgba, size);
if (hue2 != NULL) {
delete[] hue2;
hue2 = NULL;
}
if (saturation2 != NULL) {
delete[] saturation2;
saturation2 = NULL;
}
if (value2 != NULL) {
delete[] value2;
value2 = NULL;
}
vpImage<vpRGBa> I_HSV2RGBa((vpRGBa *)rgba, h, w);
filename = vpIoTools::createFilePath(opath, "Klimt_HSV2RGBa.ppm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(I_HSV2RGBa, filename);
for (unsigned int i = 0; i < Ic.getHeight(); i++) {
for (unsigned int j = 0; j < Ic.getWidth(); j++) {
if (Ic[i][j].R != I_HSV2RGBa[i][j].R || Ic[i][j].G != I_HSV2RGBa[i][j].G || Ic[i][j].B != I_HSV2RGBa[i][j].B) {
std::cerr << "Ic[i][j].R=" << static_cast<unsigned>(Ic[i][j].R)
<< " ; I_HSV2RGBa[i][j].R=" << static_cast<unsigned>(I_HSV2RGBa[i][j].R) << std::endl;
std::cerr << "Ic[i][j].G=" << static_cast<unsigned>(Ic[i][j].G)
<< " ; I_HSV2RGBa[i][j].G=" << static_cast<unsigned>(I_HSV2RGBa[i][j].G) << std::endl;
std::cerr << "Ic[i][j].B=" << static_cast<unsigned>(Ic[i][j].B)
<< " ; I_HSV2RGBa[i][j].B=" << static_cast<unsigned>(I_HSV2RGBa[i][j].B) << std::endl;
throw vpException(vpException::fatalError, "Problem with conversion between RGB <==> HSV");
}
}
}
// Test construction of a vpImage from an array with copyData==true
std::cout << "** Construction of a vpImage from an array with copyData==true" << std::endl;
unsigned char *rgba2 = new unsigned char[size * 4];
memset(rgba2, 127, size * 4);
vpImage<vpRGBa> I_copyData((vpRGBa *)rgba2, h, w, true);
// Delete the array
delete[] rgba2;
filename = vpIoTools::createFilePath(opath, "I_copyData.ppm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(I_copyData, filename);
if (I_copyData.getSize() > 0) {
I_copyData[0][0].R = 10;
}
// Benchmark and test RGBa / RGB / cv::Mat to Grayscale conversion
{
std::cout << "** Benchmark and test RGBa / RGB / cv::Mat to Grayscale "
"conversion"
<< std::endl;
// RGBa to Grayscale
vpImage<vpRGBa> I_color;
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.ppm");
vpImageIo::read(I_color, filename);
vpImage<unsigned char> I_gray_sse(I_color.getHeight(), I_color.getWidth());
vpImage<unsigned char> I_gray_regular(I_color.getHeight(), I_color.getWidth());
unsigned char value_sse = 0, value_regular = 0;
double t_sse = vpTime::measureTimeMs();
for (int iteration = 0; iteration < nbIterations; iteration++) {
vpImageConvert::convert(I_color, I_gray_sse);
value_sse += I_gray_sse[0][0];
}
t_sse = vpTime::measureTimeMs() - t_sse;
double t_regular = vpTime::measureTimeMs();
for (int iteration = 0; iteration < nbIterations; iteration++) {
computeRegularRGBaToGrayscale((unsigned char *)I_color.bitmap, I_gray_regular.bitmap, I_color.getSize());
value_regular += I_gray_regular[0][0];
}
t_regular = vpTime::measureTimeMs() - t_regular;
// Compute the error between the SSE and regular version
double rmse_error = 0.0;
for (unsigned int i = 0; i < I_color.getHeight(); i++) {
for (unsigned int j = 0; j < I_color.getWidth(); j++) {
rmse_error += (I_gray_sse[i][j] - I_gray_regular[i][j]) * (I_gray_sse[i][j] - I_gray_regular[i][j]);
}
}
std::cout << "\n RGBa to Grayscale" << std::endl;
std::cout << " t_regular (" << nbIterations << " iterations)=" << t_regular << " ms"
<< " ; t_sse (" << nbIterations << " iterations)=" << t_sse << " ms" << std::endl;
std::cout << " Speed-up=" << (t_regular / t_sse) << "X" << std::endl;
std::cout << " RMSE error between SSE and regular version: " << (std::sqrt(rmse_error / I_color.getSize()))
<< std::endl;
// To prevent the iteration loop to not be optimized?
std::cout << " value_sse=" << static_cast<unsigned>(value_sse)
<< " ; value_regular=" << static_cast<unsigned>(value_regular) << std::endl;
filename = vpIoTools::createFilePath(opath, "I_rgba2gray_sse.pgm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(I_gray_sse, filename);
filename = vpIoTools::createFilePath(opath, "I_rgba2gray_regular.pgm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(I_gray_regular, filename);
// RGB to Grayscale conversion
unsigned char *rgb_array = new unsigned char[I_color.getSize() * 3];
vpImageConvert::RGBaToRGB((unsigned char *)I_color.bitmap, rgb_array, I_color.getSize());
value_sse = 0;
value_regular = 0;
unsigned char *rgb2gray_array_sse = new unsigned char[I_color.getSize()];
for (int iteration = 0; iteration < nbIterations; iteration++) {
vpImageConvert::RGBToGrey(rgb_array, rgb2gray_array_sse, I_color.getWidth(), I_color.getHeight(), false);
value_sse += rgb2gray_array_sse[0];
}
t_sse = vpTime::measureTimeMs() - t_sse;
unsigned char *rgb2gray_array_regular = new unsigned char[I_color.getSize()];
t_regular = vpTime::measureTimeMs();
for (int iteration = 0; iteration < nbIterations; iteration++) {
computeRegularRGBToGrayscale(rgb_array, rgb2gray_array_regular, I_color.getSize());
value_regular += rgb2gray_array_regular[0];
}
t_regular = vpTime::measureTimeMs() - t_regular;
vpImage<unsigned char> I_gray2rgba_sse(rgb2gray_array_sse, I_color.getHeight(), I_color.getWidth(), false);
vpImage<unsigned char> I_gray2rgba_regular(rgb2gray_array_regular, I_color.getHeight(), I_color.getWidth(),
false);
// Compute the error between the SSE and regular version
rmse_error = 0.0;
for (unsigned int i = 0; i < I_color.getHeight(); i++) {
for (unsigned int j = 0; j < I_color.getWidth(); j++) {
rmse_error +=
(I_gray2rgba_sse[i][j] - I_gray2rgba_regular[i][j]) * (I_gray2rgba_sse[i][j] - I_gray2rgba_regular[i][j]);
}
}
std::cout << "\n RGB to Grayscale" << std::endl;
std::cout << " t_regular (" << nbIterations << " iterations)=" << t_regular << " ms"
<< " ; t_sse (" << nbIterations << " iterations)=" << t_sse << " ms" << std::endl;
std::cout << " Speed-up=" << (t_regular / t_sse) << "X" << std::endl;
std::cout << " RMSE error between SSE and regular version: " << (std::sqrt(rmse_error / I_color.getSize()))
<< std::endl;
// To prevent the iteration loop to not be optimized?
std::cout << " value_sse=" << static_cast<unsigned>(value_sse)
<< " ; value_regular=" << static_cast<unsigned>(value_regular) << std::endl;
filename = vpIoTools::createFilePath(opath, "I_rgb2gray_sse.pgm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(I_gray2rgba_sse, filename);
filename = vpIoTools::createFilePath(opath, "I_rgb2gray_regular.pgm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(I_gray2rgba_regular, filename);
#if (VISP_HAVE_OPENCV_VERSION >= 0x020101)
// BGR cv::Mat to Grayscale
std::cout << "\n BGR cv::Mat to Grayscale" << std::endl;
filename = vpIoTools::createFilePath(ipath, "Klimt/Klimt.ppm");
cv::Mat colorMat = cv::imread(filename);
std::cout << " colorMat=" << colorMat.cols << "x" << colorMat.rows << std::endl;
vpImage<unsigned char> I_mat2gray_sse, I_mat2gray_regular;
value_sse = 0;
value_regular = 0;
for (int iteration = 0; iteration < nbIterations; iteration++) {
vpImageConvert::convert(colorMat, I_mat2gray_sse, false);
value_sse += I_mat2gray_sse[0][0];
}
t_sse = vpTime::measureTimeMs() - t_sse;
t_regular = vpTime::measureTimeMs();
for (int iteration = 0; iteration < nbIterations; iteration++) {
computeRegularBGRToGrayscale(colorMat, I_mat2gray_regular);
value_regular += I_mat2gray_sse[0][0];
}
t_regular = vpTime::measureTimeMs() - t_regular;
// Compute the error between the SSE and regular version
rmse_error = 0.0;
for (unsigned int i = 0; i < I_color.getHeight(); i++) {
for (unsigned int j = 0; j < I_color.getWidth(); j++) {
rmse_error +=
(I_mat2gray_sse[i][j] - I_mat2gray_regular[i][j]) * (I_mat2gray_sse[i][j] - I_mat2gray_regular[i][j]);
}
}
std::cout << " t_regular (" << nbIterations << " iterations)=" << t_regular << " ms"
<< " ; t_sse (" << nbIterations << " iterations)=" << t_sse << " ms" << std::endl;
std::cout << " Speed-up=" << (t_regular / t_sse) << "X" << std::endl;
std::cout << " RMSE error between SSE and regular version: " << (std::sqrt(rmse_error / I_color.getSize()))
<< std::endl;
// To prevent the iteration loop to not be optimized?
std::cout << " value_sse=" << static_cast<unsigned>(value_sse)
<< " ; value_regular=" << static_cast<unsigned>(value_regular) << std::endl;
filename = vpIoTools::createFilePath(opath, "I_mat2gray_sse.pgm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(I_mat2gray_sse, filename);
filename = vpIoTools::createFilePath(opath, "I_mat2gray_regular.pgm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(I_mat2gray_regular, filename);
// BGR cv::Mat to Grayscale cv::Mat
std::cout << "\n BGR Mat to Grayscale Mat" << std::endl;
cv::Mat grayscaleMat(colorMat.size(), CV_8U);
unsigned char value_mat = 0;
double t_opencv = vpTime::measureTimeMs();
for (int iteration = 0; iteration < nbIterations; iteration++) {
cv::cvtColor(colorMat, grayscaleMat, cv::COLOR_BGR2GRAY);
value_mat += grayscaleMat.ptr<uchar>(0)[0];
}
t_opencv = vpTime::measureTimeMs() - t_opencv;
std::cout << " t_opencv (" << nbIterations << " iterations)=" << t_opencv << " ms"
<< " ; t_sse (" << nbIterations << " iterations)=" << t_sse << " ms" << std::endl;
std::cout << " Speed-up=" << (t_opencv / t_sse) << "X" << std::endl;
std::cout << " value_mat=" << static_cast<unsigned>(value_mat) << std::endl;
vpImage<unsigned char> I_grayscale_mat;
vpImageConvert::convert(grayscaleMat, I_grayscale_mat);
filename = vpIoTools::createFilePath(opath, "grayscaleMat.pgm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(I_grayscale_mat, filename);
// Test RGB to Grayscale + Flip
std::cout << "\n RGB to Grayscale + Flip" << std::endl;
unsigned char *rgb2gray_flip_array_sse = new unsigned char[I_color.getSize()];
vpImageConvert::RGBToGrey(rgb_array, rgb2gray_flip_array_sse, I_color.getWidth(), I_color.getHeight(), true);
vpImage<unsigned char> I_rgb2gray_flip_sse(rgb2gray_flip_array_sse, I_color.getHeight(), I_color.getWidth());
filename = vpIoTools::createFilePath(opath, "I_rgb2gray_flip_sse.pgm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(I_rgb2gray_flip_sse, filename);
// Test BGR to Grayscale + Flip
std::cout << "\n Conversion BGR to Grayscale + Flip" << std::endl;
unsigned char *bgr2gray_flip_array_sse = new unsigned char[I_color.getSize()];
vpImage<unsigned char> I_bgr2gray_flip_sse(bgr2gray_flip_array_sse, I_color.getHeight(), I_color.getWidth());
vpImageConvert::convert(colorMat, I_bgr2gray_flip_sse, true);
filename = vpIoTools::createFilePath(opath, "I_bgr2gray_flip_sse.pgm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(I_bgr2gray_flip_sse, filename);
// Test RGB to Grayscale + Flip + Crop
std::cout << "\n RGB to Grayscale + Flip + Crop" << std::endl;
cv::Rect rect_roi(11, 17, 347, 449);
cv::Mat colorMat_crop = colorMat(rect_roi);
cv::Mat colorMat_crop_continous = colorMat(rect_roi).clone();
std::cout << " colorMat_crop: " << colorMat_crop.cols << "x" << colorMat_crop.rows << " is continuous? "
<< colorMat_crop.isContinuous() << std::endl;
std::cout << " colorMat_crop_continous: " << colorMat_crop_continous.cols << "x" << colorMat_crop_continous.rows
<< " is continuous? " << colorMat_crop_continous.isContinuous() << std::endl;
vpImage<vpRGBa> I_color_crop((unsigned int)(rect_roi.height - rect_roi.y),
(unsigned int)(rect_roi.width - rect_roi.x));
for (unsigned int i = (unsigned int)rect_roi.y; i < (unsigned int)rect_roi.height; i++) {
for (unsigned int j = (unsigned int)rect_roi.x; j < (unsigned int)rect_roi.width; j++) {
I_color_crop[(unsigned int)((int)i - rect_roi.y)][(unsigned int)((int)j - rect_roi.x)] = I_color[i][j];
}
}
filename = vpIoTools::createFilePath(opath, "I_color_crop.ppm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(I_color_crop, filename);
unsigned char *rgb_array_crop = new unsigned char[I_color_crop.getSize() * 3];
vpImageConvert::RGBaToRGB((unsigned char *)I_color_crop.bitmap, rgb_array_crop, I_color_crop.getSize());
unsigned char *rgb2gray_flip_crop_array_sse = new unsigned char[I_color_crop.getSize()];
vpImageConvert::RGBToGrey(rgb_array_crop, rgb2gray_flip_crop_array_sse, I_color_crop.getWidth(),
I_color_crop.getHeight(), true);
vpImage<unsigned char> I_rgb2gray_flip_crop_sse(rgb2gray_flip_crop_array_sse, I_color_crop.getHeight(),
I_color_crop.getWidth());
filename = vpIoTools::createFilePath(opath, "I_rgb2gray_flip_crop_sse.pgm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(I_rgb2gray_flip_crop_sse, filename);
// Test BGR to Grayscale + Flip + Crop
std::cout << "\n BGR to Grayscale + Flip + Crop" << std::endl;
vpImage<unsigned char> I_bgr2gray_flip_crop_sse(I_color_crop.getHeight(), I_color_crop.getWidth());
vpImageConvert::convert(colorMat_crop_continous, I_bgr2gray_flip_crop_sse, true);
filename = vpIoTools::createFilePath(opath, "I_bgr2gray_flip_crop_sse.pgm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(I_bgr2gray_flip_crop_sse, filename);
// Test BGR to Grayscale + Flip + Crop + No continuous Mat
std::cout << "\n BGR to Grayscale + Flip + Crop + No continuous Mat" << std::endl;
vpImage<unsigned char> I_bgr2gray_flip_crop_no_continuous_sse(I_color_crop.getHeight(), I_color_crop.getWidth());
vpImageConvert::convert(colorMat_crop, I_bgr2gray_flip_crop_no_continuous_sse, true);
filename = vpIoTools::createFilePath(opath, "I_bgr2gray_flip_crop_no_continuous_sse.pgm");
std::cout << " Resulting image saved in: " << filename << std::endl;
vpImageIo::write(I_bgr2gray_flip_crop_no_continuous_sse, filename);
delete[] rgb_array_crop;
#endif
delete[] rgb_array;
std::cout << "Test succeed" << std::endl;
}
return 0;
} catch (const vpException &e) {
std::cout << "Catch an exception: " << e.getMessage() << std::endl;
return 1;
}
}