Visual Servoing Platform  version 3.6.1 under development (2024-03-28)
simulateFourPoints2DCartesianCamVelocity.cpp

Visual servoing experiment on 4 points with a visualization from the camera and from an external view using vpSimulator.

/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2023 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Simulation of a visual servoing with visualization.
*
*****************************************************************************/
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpDebug.h>
#ifdef VISP_HAVE_COIN3D_AND_GUI
#include <visp3/ar/vpSimulator.h>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpTime.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/vs/vpServo.h>
#define GETOPTARGS "di:h"
#define SAVE 0
void usage(const char *name, const char *badparam, std::string ipath)
{
fprintf(stdout, "\n\
Simulation Servo 4points.\n\
\n\
SYNOPSIS\n\
%s [-i <input image path>] [-d] [-h]\n",
name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
-i <input image path> %s\n\
Set image input path.\n\
From this path read \"iv/4points.iv\"\n\
cad model.\n\
Setting the VISP_INPUT_IMAGE_PATH environment\n\
variable produces the same behaviour than using\n\
this option.\n\
\n\
-d \n\
Disable the image display. This can be useful \n\
for automatic tests using crontab under Unix or \n\
using the task manager under Windows.\n\
\n\
-h\n\
Print the help.\n\n",
ipath.c_str());
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, std::string &ipath, bool &display)
{
const char *optarg;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg)) > 1) {
switch (c) {
case 'i':
ipath = optarg;
break;
case 'd':
display = false;
break;
case 'h':
usage(argv[0], nullptr, ipath);
return false;
break;
default:
usage(argv[0], optarg, ipath);
return false;
break;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], nullptr, ipath);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg << std::endl << std::endl;
return false;
}
return true;
}
static void *mainLoop(void *_simu)
{
vpSimulator *simu = static_cast<vpSimulator *>(_simu);
vpServo task;
float sampling_time = 0.040f; // Sampling period in second
robot.setSamplingTime(sampling_time);
std::cout << std::endl;
std::cout << "-------------------------------------------------------" << std::endl;
std::cout << " Test program for vpServo " << std::endl;
std::cout << " Eye-in-hand task control, articular velocities are computed" << std::endl;
std::cout << " Simulation " << std::endl;
std::cout << " task : servo 4 points " << std::endl;
std::cout << "-------------------------------------------------------" << std::endl;
std::cout << std::endl;
// Sets the initial camera location
vcMo[0] = 0.3;
vcMo[1] = 0.2;
vcMo[2] = 3;
vcMo[3] = 0;
vcMo[4] = vpMath::rad(0);
vcMo[5] = vpMath::rad(40);
vpHomogeneousMatrix wMo; // Set to identity
vpHomogeneousMatrix wMc; // Camera location in world frame
wMc = wMo * cMo.inverse();
robot.setPosition(wMc);
simu->setCameraPosition(cMo);
simu->getCameraPosition(cMo);
wMc = wMo * cMo.inverse();
robot.setPosition(wMc);
// Sets the point coordinates in the world frame
vpPoint point[4];
point[0].setWorldCoordinates(-0.1, -0.1, 0);
point[1].setWorldCoordinates(0.1, -0.1, 0);
point[2].setWorldCoordinates(0.1, 0.1, 0);
point[3].setWorldCoordinates(-0.1, 0.1, 0);
// Project : computes the point coordinates in the camera frame and its 2D
// coordinates
for (int i = 0; i < 4; i++)
point[i].track(cMo);
// Sets the desired position of the point
for (int i = 0; i < 4; i++)
vpFeatureBuilder::create(p[i], point[i]); // retrieve x,y and Z of the vpPoint structure
// Sets the desired position of the point
pd[0].buildFrom(-0.1, -0.1, 1);
pd[1].buildFrom(0.1, -0.1, 1);
pd[2].buildFrom(0.1, 0.1, 1);
pd[3].buildFrom(-0.1, 0.1, 1);
// Define the task
// We want an eye-in-hand control law
// Articular velocity are computed
// Set the position of the end-effector frame in the camera frame as identity
task.set_cVe(cVe);
// Set the Jacobian (expressed in the end-effector frame)
vpMatrix eJe;
robot.get_eJe(eJe);
task.set_eJe(eJe);
// We want to see a point on a point
for (int i = 0; i < 4; i++)
task.addFeature(p[i], pd[i]);
// Set the gain
task.setLambda(1.0);
std::cout << "Display task information" << std::endl;
task.print();
vpTime::wait(1000); // Sleep 1s to ensure that all the thread are initialized
unsigned int iter = 0;
// visual servo loop
while (iter++ < 100) {
double t = vpTime::measureTimeMs();
robot.get_eJe(eJe);
task.set_eJe(eJe);
wMc = robot.getPosition();
cMo = wMc.inverse() * wMo;
for (int i = 0; i < 4; i++) {
point[i].track(cMo);
vpFeatureBuilder::create(p[i], point[i]);
}
v = task.computeControlLaw();
simu->setCameraPosition(cMo);
if (SAVE == 1) {
char name[FILENAME_MAX];
snprintf(name, FILENAME_MAX, "/tmp/image.%04u.external.png", iter);
std::cout << name << std::endl;
simu->write(name);
snprintf(name, FILENAME_MAX, "/tmp/image.%04u.internal.png", iter);
simu->write(name);
}
vpTime::wait(t, sampling_time * 1000); // Wait 40 ms
}
std::cout << "\nDisplay task information" << std::endl;
task.print();
void *a = nullptr;
return a;
}
int main(int argc, const char **argv)
{
try {
std::string env_ipath;
std::string opt_ipath;
std::string ipath;
std::string filename;
bool opt_display = true;
// Get the visp-images-data package path or VISP_INPUT_IMAGE_PATH
// environment variable value
// Set the default input path
if (!env_ipath.empty())
ipath = env_ipath;
// Read the command line options
if (getOptions(argc, argv, opt_ipath, opt_display) == false) {
return EXIT_FAILURE;
}
// Get the option values
if (!opt_ipath.empty())
ipath = opt_ipath;
// Compare ipath and env_ipath. If they differ, we take into account
// the input path coming from the command line option
if (!opt_ipath.empty() && !env_ipath.empty()) {
if (ipath != env_ipath) {
std::cout << std::endl << "WARNING: " << std::endl;
std::cout << " Since -i <visp image path=" << ipath << "> "
<< " is different from VISP_IMAGE_PATH=" << env_ipath << std::endl
<< " we skip the environment variable." << std::endl;
}
}
// Test if an input path is set
if (opt_ipath.empty() && env_ipath.empty()) {
usage(argv[0], nullptr, ipath);
std::cerr << std::endl << "ERROR:" << std::endl;
std::cerr << " Use -i <visp image path> option or set VISP_INPUT_IMAGE_PATH " << std::endl
<< " environment variable to specify the location of the " << std::endl
<< " image path where test images are located." << std::endl
<< std::endl;
return EXIT_FAILURE;
}
fMo[2][3] = 0;
if (opt_display) {
simu.initInternalViewer(300, 300);
simu.initExternalViewer(300, 300);
vpTime::wait(1000);
simu.setZoomFactor(1.0f);
// Load the cad model
filename = vpIoTools::createFilePath(ipath, "iv/4points.iv");
simu.load(filename.c_str());
simu.initApplication(&mainLoop);
simu.mainLoop();
}
return EXIT_SUCCESS;
}
catch (const vpException &e) {
std::cout << "Catch an exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#else
int main()
{
std::cout << "You do not have Coin3D and SoQT or SoWin or SoXt functionalities enabled..." << std::endl;
std::cout << "Tip:" << std::endl;
std::cout
<< "- Install Coin3D and SoQT or SoWin or SoXt, configure ViSP again using cmake and build again this example"
<< std::endl;
return EXIT_SUCCESS;
}
#endif
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:163
error that can be emitted by ViSP classes.
Definition: vpException.h:59
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void buildFrom(double x, double y, double Z)
void track(const vpHomogeneousMatrix &cMo)
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
static std::string getViSPImagesDataPath()
Definition: vpIoTools.cpp:1781
static std::string createFilePath(const std::string &parent, const std::string &child)
Definition: vpIoTools.cpp:2142
static double rad(double deg)
Definition: vpMath.h:127
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:146
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:77
void setWorldCoordinates(double oX, double oY, double oZ)
Definition: vpPoint.cpp:110
Implementation of a pose vector and operations on poses.
Definition: vpPoseVector.h:189
void get_eJe(vpMatrix &eJe) vp_override
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) vp_override
@ CAMERA_FRAME
Definition: vpRobot.h:82
void setMaxTranslationVelocity(double maxVt)
Definition: vpRobot.cpp:236
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:378
@ EYEINHAND_L_cVe_eJe
Definition: vpServo.h:162
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:329
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:1028
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:169
void setLambda(double c)
Definition: vpServo.h:976
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:1091
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:132
vpColVector computeControlLaw()
Definition: vpServo.cpp:703
@ CURRENT
Definition: vpServo.h:196
Class that defines the simplest robot: a free flying camera.
Implementation of a simulator based on Coin3d (www.coin3d.org).
Definition: vpSimulator.h:99
void load(const char *file_name)
load an iv file
void setInternalCameraParameters(vpCameraParameters &cam)
set internal camera parameters
virtual void mainLoop()
activate the mainloop
void setExternalCameraParameters(vpCameraParameters &cam)
set external camera parameters
void initMainApplication()
perform some initialization in the main program thread
void initApplication(void *(*start_routine)(void *))
begin the main program
void getCameraPosition(vpHomogeneousMatrix &_cMf)
get the camera position (from an homogeneous matrix)
Definition: vpSimulator.h:248
void setZoomFactor(float zoom)
set the size of the camera/frame
void setCameraPosition(vpHomogeneousMatrix &cMf)
set the camera position (from an homogeneous matrix)
void initExternalViewer(unsigned int nlig, unsigned int ncol)
initialize the external view
void write(const char *fileName)
virtual void initInternalViewer(unsigned int nlig, unsigned int ncol)
initialize the camera view
void closeMainApplication()
void display(vpImage< unsigned char > &I, const std::string &title)
Display a gray-scale image.
VISP_EXPORT int wait(double t0, double t)
VISP_EXPORT double measureTimeMs()