Visual Servoing Platform  version 3.2.0 under development (2018-10-16)
servoSimuSquareLine2DCamVelocityDisplay.cpp

Servo four lines:

/****************************************************************************
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2017 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Simulation of a 2D visual servoing on a line.
*
* Authors:
* Nicolas Melchior
*
*****************************************************************************/
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpDebug.h>
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GTK) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_OPENCV))
#include <stdio.h>
#include <stdlib.h>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpLine.h>
#include <visp3/core/vpMath.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeatureLine.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
// List of allowed command line options
#define GETOPTARGS "cdh"
void usage(const char *name, const char *badparam);
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display);
void usage(const char *name, const char *badparam)
{
fprintf(stdout, "\n\
Simulation of 2D a visual servoing on a line:\n\
- eye-in-hand control law,\n\
- velocity computed in the camera frame,\n\
- display the camera view.\n\
\n\
SYNOPSIS\n\
%s [-c] [-d] [-h]\n", name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
\n\
-c\n\
Disable the mouse click. Useful to automaze the \n\
execution of this program without humain intervention.\n\
\n\
-d \n\
Turn off the display.\n\
\n\
-h\n\
Print the help.\n");
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'c':
click_allowed = false;
break;
case 'd':
display = false;
break;
case 'h':
usage(argv[0], NULL);
return false;
break;
default:
usage(argv[0], optarg_);
return false;
break;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], NULL);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
int main(int argc, const char **argv)
{
try {
bool opt_display = true;
bool opt_click_allowed = true;
// Read the command line options
if (getOptions(argc, argv, opt_click_allowed, opt_display) == false) {
exit(-1);
}
vpImage<unsigned char> I(512, 512, 0);
// We open a window using either X11, GTK or GDI.
#if defined VISP_HAVE_X11
vpDisplayX display;
#elif defined VISP_HAVE_GTK
vpDisplayGTK display;
#elif defined VISP_HAVE_GDI
vpDisplayGDI display;
#elif defined VISP_HAVE_OPENCV
vpDisplayOpenCV display;
#endif
if (opt_display) {
try {
// Display size is automatically defined by the image (I) size
display.init(I, 100, 100, "Camera view...");
// Display the image
// The image class has a member that specify a pointer toward
// the display that has been initialized in the display declaration
// therefore is is no longuer necessary to make a reference to the
// display variable.
} catch (...) {
vpERROR_TRACE("Error while displaying the image");
exit(-1);
}
}
// Set the camera parameters
double px, py;
px = py = 600;
double u0, v0;
u0 = v0 = 256;
vpCameraParameters cam(px, py, u0, v0);
vpServo task;
// sets the initial camera location
vpHomogeneousMatrix cMo(0.2, 0.2, 1, vpMath::rad(45), vpMath::rad(45), vpMath::rad(125));
// Compute the position of the object in the world frame
robot.getPosition(wMc);
wMo = wMc * cMo;
// sets the final camera location (for simulation purpose)
int nbline = 4;
// sets the line coordinates (2 planes) in the world frame
vpLine line[4];
line[0].setWorldCoordinates(1, 0, 0, 0.05, 0, 0, 1, 0);
line[1].setWorldCoordinates(0, 1, 0, 0.05, 0, 0, 1, 0);
line[2].setWorldCoordinates(1, 0, 0, -0.05, 0, 0, 1, 0);
line[3].setWorldCoordinates(0, 1, 0, -0.05, 0, 0, 1, 0);
// sets the desired position of the visual feature
for (int i = 0; i < nbline; i++) {
line[i].track(cMod);
line[i].print();
vpFeatureBuilder::create(ld[i], line[i]);
}
// computes the line coordinates in the camera frame and its 2D
// coordinates sets the current position of the visual feature
for (int i = 0; i < nbline; i++) {
line[i].track(cMo);
line[i].print();
vpFeatureBuilder::create(l[i], line[i]);
l[i].print();
}
// define the task
// - we want an eye-in-hand control law
// - robot is controlled in the camera frame
// It could be also interesting to test the following tasks
// task.setInteractionMatrixType(vpServo::DESIRED,
// vpServo::PSEUDO_INVERSE); task.setInteractionMatrixType(vpServo::MEAN,
// vpServo::PSEUDO_INVERSE);
// we want to see a four lines on four lines
for (int i = 0; i < nbline; i++)
task.addFeature(l[i], ld[i]);
vpServoDisplay::display(task, cam, I);
// set the gain
task.setLambda(1);
// Display task information
task.print();
if (opt_display && opt_click_allowed) {
std::cout << "\n\nClick in the camera view window to start..." << std::endl;
}
unsigned int iter = 0;
// loop
while (iter++ < 200) {
std::cout << "---------------------------------------------" << iter << std::endl;
// get the robot position
robot.getPosition(wMc);
// Compute the position of the camera wrt the object frame
cMo = wMc.inverse() * wMo;
// new line position: retrieve x,y and Z of the vpLine structure
for (int i = 0; i < nbline; i++) {
line[i].track(cMo);
vpFeatureBuilder::create(l[i], line[i]);
}
if (opt_display) {
vpServoDisplay::display(task, cam, I);
}
// compute the control law
v = task.computeControlLaw();
// send the camera velocity to the controller
std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
;
}
if (opt_display && opt_click_allowed) {
std::cout << "\nClick in the camera view window to end..." << std::endl;
}
// Display task information
task.print();
task.kill();
return EXIT_SUCCESS;
} catch (const vpException &e) {
std::cout << "Catch a ViSP exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#else
int main()
{
std::cout << "You do not have X11, or GTK, or GDI (Graphical Device Interface) functionalities to display images..." << std::endl;
std::cout << "Tip if you are on a unix-like system:" << std::endl;
std::cout << "- Install X11, configure again ViSP using cmake and build again this example" << std::endl;
std::cout << "Tip if you are on a windows-like system:" << std::endl;
std::cout << "- Install GDI, configure again ViSP using cmake and build again this example" << std::endl;
return EXIT_SUCCESS;
}
#endif