Visual Servoing Platform  version 3.2.0 under development (2018-10-21)
servoSimuCylinder.cpp

Demonstration of the wireframe simulator with a simple visual servoing.

/****************************************************************************
*
* This file is part of the ViSP software.
* Copyright (C) 2005 - 2017 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See http://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Demonstration of the wireframe simulator with a simple visual servoing
*
* Authors:
* Nicolas Melchior
*
*****************************************************************************/
#include <stdlib.h>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpCylinder.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpTime.h>
#include <visp3/core/vpVelocityTwistMatrix.h>
#include <visp3/gui/vpDisplayD3D.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/io/vpImageIo.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/robot/vpWireFrameSimulator.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/vs/vpServo.h>
#define GETOPTARGS "dh"
#ifdef VISP_HAVE_DISPLAY
void usage(const char *name, const char *badparam);
bool getOptions(int argc, const char **argv, bool &display);
void usage(const char *name, const char *badparam)
{
fprintf(stdout, "\n\
Demonstration of the wireframe simulator with a simple visual servoing.\n\
\n\
The visual servoing consists in bringing the camera at a desired position\n\
from the object.\n\
\n\
The visual features used to compute the pose of the camera and \n\
thus the control law are two lines. These features are computed thanks \n\
to the equation of a cylinder.\n\
\n\
This demonstration explains also how to move the object around a world \n\
reference frame. Here, the movment is a rotation around the x and y axis \n\
at a given distance from the world frame. In fact the object trajectory \n\
is on a sphere whose center is the origin of the world frame.\n\
\n\
SYNOPSIS\n\
%s [-d] [-h]\n", name);
fprintf(stdout, "\n\
OPTIONS: \n\
-d \n\
Turn off the display.\n\
\n\
-h\n\
Print the help.\n");
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, bool &display)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'd':
display = false;
break;
case 'h':
usage(argv[0], NULL);
return false;
break;
default:
usage(argv[0], optarg_);
return false;
break;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], NULL);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
int main(int argc, const char **argv)
{
try {
bool opt_display = true;
// Read the command line options
if (getOptions(argc, argv, opt_display) == false) {
exit(-1);
}
vpImage<vpRGBa> Iint(480, 640, 255);
vpImage<vpRGBa> Iext(480, 640, 255);
#if defined VISP_HAVE_X11
vpDisplayX display[2];
#elif defined VISP_HAVE_OPENCV
vpDisplayOpenCV display[2];
#elif defined VISP_HAVE_GDI
vpDisplayGDI display[2];
#elif defined VISP_HAVE_D3D9
vpDisplayD3D display[2];
#elif defined VISP_HAVE_GTK
vpDisplayGTK display[2];
#endif
if (opt_display) {
// Display size is automatically defined by the image (I) size
display[0].init(Iint, 100, 100, "The internal view");
display[1].init(Iext, 100, 100, "The first external view");
}
vpServo task;
float sampling_time = 0.040f; // Sampling period in second
robot.setSamplingTime(sampling_time);
// Set initial position of the object in the camera frame
vpHomogeneousMatrix cMo(0, 0.1, 0.3, vpMath::rad(35), vpMath::rad(25), vpMath::rad(75));
// Set desired position of the object in the camera frame
vpHomogeneousMatrix cdMo(0.0, 0.0, 0.5, vpMath::rad(90), vpMath::rad(0), vpMath::rad(0));
// Set initial position of the object in the world frame
vpHomogeneousMatrix wMo(0.0, 0.0, 0, 0, 0, 0);
// Position of the camera in the world frame
wMc = wMo * cMo.inverse();
// Create a cylinder
vpCylinder cylinder(0, 0, 1, 0, 0, 0, 0.1);
// Projection of the cylinder
cylinder.track(cMo);
// Set the current visual feature
// Projection of the cylinder
cylinder.track(cdMo);
task.set_cVe(cVe);
vpMatrix eJe;
robot.get_eJe(eJe);
task.set_eJe(eJe);
for (int i = 0; i < 2; i++)
task.addFeature(l[i], ld[i]);
task.setLambda(1);
// Set the scene
// Initialize simulator frames
sim.set_fMo(wMo); // Position of the object in the world reference frame
sim.setCameraPositionRelObj(cMo); // initial position of the camera
sim.setDesiredCameraPosition(cdMo); // desired position of the camera
// Set the External camera position
// Set the parameters of the cameras (internal and external)
vpCameraParameters camera(1000, 1000, 320, 240);
int stop = 10;
if (opt_display) {
stop = 2500;
// Get the internal and external views
sim.getInternalImage(Iint);
sim.getExternalImage(Iext);
// Display the object frame (current and desired position)
vpDisplay::displayFrame(Iint, cMo, camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iint, cdMo, camera, 0.2, vpColor::none);
// Display the object frame the world reference frame and the camera
// frame
vpDisplay::displayFrame(Iext, camMf * sim.get_fMo() * cMo.inverse(), camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iext, camMf * sim.get_fMo(), camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iext, camMf, camera, 0.2, vpColor::none);
std::cout << "Click on a display" << std::endl;
while (!vpDisplay::getClick(Iint, false) && !vpDisplay::getClick(Iext, false)) {
};
}
robot.setPosition(wMc);
// Print the task
task.print();
int iter = 0;
// Set the secondary task parameters
vpColVector e1(6);
e1 = 0;
vpColVector e2(6);
e2 = 0;
vpColVector proj_e1;
vpColVector proj_e2;
iter = 0;
double rapport = 0;
double vitesse = 0.3;
int tempo = 600;
while (iter++ < stop) {
if (opt_display) {
}
double t = vpTime::measureTimeMs();
robot.get_eJe(eJe);
task.set_eJe(eJe);
wMc = robot.getPosition();
cMo = wMc.inverse() * wMo;
cylinder.track(cMo);
v = task.computeControlLaw();
// Compute the velocity with the secondary task
if (iter % tempo < 200 && iter % tempo >= 0) {
e2 = 0;
e1[0] = -fabs(vitesse);
proj_e1 = task.secondaryTask(e1);
rapport = -vitesse / proj_e1[0];
proj_e1 *= rapport;
v += proj_e1;
}
if (iter % tempo < 300 && iter % tempo >= 200) {
e1 = 0;
e2[1] = -fabs(vitesse);
proj_e2 = task.secondaryTask(e2);
rapport = -vitesse / proj_e2[1];
proj_e2 *= rapport;
v += proj_e2;
}
if (iter % tempo < 500 && iter % tempo >= 300) {
e2 = 0;
e1[0] = -fabs(vitesse);
proj_e1 = task.secondaryTask(e1);
rapport = vitesse / proj_e1[0];
proj_e1 *= rapport;
v += proj_e1;
}
if (iter % tempo < 600 && iter % tempo >= 500) {
e1 = 0;
e2[1] = -fabs(vitesse);
proj_e2 = task.secondaryTask(e2);
rapport = vitesse / proj_e2[1];
proj_e2 *= rapport;
v += proj_e2;
}
// Update the simulator frames
sim.set_fMo(wMo); // This line is not really requested since the object
// doesn't move
if (opt_display) {
// Get the internal and external views
sim.getInternalImage(Iint);
sim.getExternalImage(Iext);
// Display the object frame (current and desired position)
vpDisplay::displayFrame(Iint, cMo, camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iint, cdMo, camera, 0.2, vpColor::none);
// Display the object frame the world reference frame and the camera
// frame
vpDisplay::displayFrame(Iext, sim.getExternalCameraPosition() * sim.get_fMo() * cMo.inverse(), camera, 0.2,
;
}
vpTime::wait(t, sampling_time * 1000); // Wait 40 ms
std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
}
task.print();
task.kill();
return EXIT_SUCCESS;
} catch (const vpException &e) {
std::cout << "Catch an exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#else
int main()
{
std::cout << "You do not have X11, or GDI (Graphical Device Interface), or GTK functionalities to display images..." << std::endl;
std::cout << "Tip if you are on a unix-like system:" << std::endl;
std::cout << "- Install X11, configure again ViSP using cmake and build again this example" << std::endl;
std::cout << "Tip if you are on a windows-like system:" << std::endl;
std::cout << "- Install GDI, configure again ViSP using cmake and build again this example" << std::endl;
return EXIT_SUCCESS;
}
#endif