Visual Servoing Platform  version 3.6.1 under development (2024-03-29)
servoSimuCylinder.cpp

Demonstration of the wireframe simulator with a simple visual servoing.

/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2023 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Demonstration of the wireframe simulator with a simple visual servoing
*
*****************************************************************************/
#include <stdlib.h>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpCylinder.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpTime.h>
#include <visp3/core/vpVelocityTwistMatrix.h>
#include <visp3/gui/vpDisplayD3D.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpPlot.h>
#include <visp3/io/vpImageIo.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/robot/vpWireFrameSimulator.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/vs/vpServo.h>
#define GETOPTARGS "dhp"
#if defined(VISP_HAVE_DISPLAY) && (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
void usage(const char *name, const char *badparam)
{
fprintf(stdout, "\n\
Demonstration of the wireframe simulator with a simple visual servoing.\n\
\n\
The visual servoing consists in bringing the camera at a desired position\n\
from the object.\n\
\n\
The visual features used to compute the pose of the camera and \n\
thus the control law are two lines. These features are computed thanks \n\
to the equation of a cylinder.\n\
\n\
This demonstration explains also how to move the object around a world \n\
reference frame. Here, the movment is a rotation around the x and y axis \n\
at a given distance from the world frame. In fact the object trajectory \n\
is on a sphere whose center is the origin of the world frame.\n\
\n\
SYNOPSIS\n\
%s [-d] [-p] [-h]\n",
name);
fprintf(stdout, "\n\
OPTIONS: \n\
-d \n\
Turn off the display.\n\
\n\
-p \n\
Turn off the plotter.\n\
\n\
-h\n\
Print the help.\n");
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
bool getOptions(int argc, const char **argv, bool &display, bool &plot)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'd':
display = false;
break;
case 'p':
plot = false;
break;
case 'h':
usage(argv[0], nullptr);
return false;
default:
usage(argv[0], optarg_);
return false;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], nullptr);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
int main(int argc, const char **argv)
{
try {
bool opt_display = true;
bool opt_plot = true;
// Read the command line options
if (getOptions(argc, argv, opt_display, opt_plot) == false) {
return EXIT_FAILURE;
}
vpImage<vpRGBa> Iint(480, 640, 255);
vpImage<vpRGBa> Iext(480, 640, 255);
#if defined(VISP_HAVE_X11)
#elif defined(HAVE_OPENCV_HIGHGUI)
#elif defined(VISP_HAVE_GDI)
#elif defined(VISP_HAVE_D3D9)
#elif defined(VISP_HAVE_GTK)
#endif
if (opt_display) {
// Display size is automatically defined by the image (I) size
display[0].init(Iint, 100, 100, "The internal view");
display[1].init(Iext, 100, 100, "The first external view");
}
vpPlot *plotter = nullptr;
vpServo task;
float sampling_time = 0.020f; // Sampling period in second
robot.setSamplingTime(sampling_time);
// Set initial position of the object in the camera frame
vpHomogeneousMatrix cMo(0, 0.1, 0.3, vpMath::rad(35), vpMath::rad(25), vpMath::rad(75));
// Set desired position of the object in the camera frame
vpHomogeneousMatrix cdMo(0.0, 0.0, 0.5, vpMath::rad(90), vpMath::rad(0), vpMath::rad(0));
// Set initial position of the object in the world frame
vpHomogeneousMatrix wMo(0.0, 0.0, 0, 0, 0, 0);
// Position of the camera in the world frame
wMc = wMo * cMo.inverse();
// Create a cylinder
vpCylinder cylinder(0, 0, 1, 0, 0, 0, 0.1);
// Projection of the cylinder
cylinder.track(cMo);
// Set the current visual feature
// Projection of the cylinder
cylinder.track(cdMo);
task.set_cVe(cVe);
vpMatrix eJe;
robot.get_eJe(eJe);
task.set_eJe(eJe);
for (int i = 0; i < 2; i++)
task.addFeature(l[i], ld[i]);
if (opt_plot) {
plotter = new vpPlot(2, 480, 640, 750, 550, "Real time curves plotter");
plotter->setTitle(0, "Visual features error");
plotter->setTitle(1, "Camera velocities");
plotter->initGraph(0, task.getDimension());
plotter->initGraph(1, 6);
plotter->setLegend(0, 0, "error_feat_l1_rho");
plotter->setLegend(0, 1, "error_feat_l1_theta");
plotter->setLegend(0, 2, "error_feat_l2_rho");
plotter->setLegend(0, 3, "error_feat_l2_theta");
plotter->setLegend(1, 0, "vc_x");
plotter->setLegend(1, 1, "vc_y");
plotter->setLegend(1, 2, "vc_z");
plotter->setLegend(1, 3, "wc_x");
plotter->setLegend(1, 4, "wc_y");
plotter->setLegend(1, 5, "wc_z");
}
task.setLambda(1);
// Set the scene
// Initialize simulator frames
sim.set_fMo(wMo); // Position of the object in the world reference frame
sim.setCameraPositionRelObj(cMo); // Initial position of the object in the camera frame
sim.setDesiredCameraPosition(cdMo); // Desired position of the object in the camera frame
// Set the External camera position
// Set the parameters of the cameras (internal and external)
vpCameraParameters camera(1000, 1000, 320, 240);
int max_iter = 10;
if (opt_display) {
max_iter = 2500;
// Get the internal and external views
sim.getInternalImage(Iint);
sim.getExternalImage(Iext);
// Display the object frame (current and desired position)
vpDisplay::displayFrame(Iint, cMo, camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iint, cdMo, camera, 0.2, vpColor::none);
// Display the object frame the world reference frame and the camera
// frame
vpDisplay::displayFrame(Iext, camMf * sim.get_fMo() * cMo.inverse(), camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iext, camMf * sim.get_fMo(), camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iext, camMf, camera, 0.2, vpColor::none);
vpDisplay::displayText(Iint, 20, 20, "Click to start visual servo", vpColor::red);
std::cout << "Click on a display" << std::endl;
while (!vpDisplay::getClick(Iint, false) && !vpDisplay::getClick(Iext, false)) {
};
}
robot.setPosition(wMc);
// Print the task
task.print();
int iter = 0;
bool stop = false;
// Set the secondary task parameters
vpColVector e1(6, 0);
vpColVector e2(6, 0);
vpColVector proj_e1;
vpColVector proj_e2;
double rapport = 0;
double vitesse = 0.3;
int tempo = 600;
double t_prev, t = vpTime::measureTimeMs();
while (iter++ < max_iter && !stop) {
t_prev = t;
if (opt_display) {
}
robot.get_eJe(eJe);
task.set_eJe(eJe);
wMc = robot.getPosition();
cMo = wMc.inverse() * wMo;
cylinder.track(cMo);
v = task.computeControlLaw();
// Compute the velocity with the secondary task
if (iter % tempo < 200 && iter % tempo >= 0) {
e2 = 0;
e1[0] = -fabs(vitesse);
proj_e1 = task.secondaryTask(e1, true);
rapport = -vitesse / proj_e1[0];
proj_e1 *= rapport;
v += proj_e1;
}
else if (iter % tempo < 300 && iter % tempo >= 200) {
e1 = 0;
e2[1] = -fabs(vitesse);
proj_e2 = task.secondaryTask(e2, true);
rapport = -vitesse / proj_e2[1];
proj_e2 *= rapport;
v += proj_e2;
}
else if (iter % tempo < 500 && iter % tempo >= 300) {
e2 = 0;
e1[0] = -fabs(vitesse);
proj_e1 = task.secondaryTask(e1, true);
rapport = vitesse / proj_e1[0];
proj_e1 *= rapport;
v += proj_e1;
}
else if (iter % tempo < 600 && iter % tempo >= 500) {
e1 = 0;
e2[1] = -fabs(vitesse);
proj_e2 = task.secondaryTask(e2, true);
rapport = vitesse / proj_e2[1];
proj_e2 *= rapport;
v += proj_e2;
}
// Update the simulator frames
sim.set_fMo(wMo); // This line is not really requested since the object
// doesn't move
if (opt_plot) {
plotter->plot(0, iter, task.getError());
plotter->plot(1, iter, v);
}
if (opt_display) {
// Get the internal and external views
sim.getInternalImage(Iint);
sim.getExternalImage(Iext);
// Display the object frame (current and desired position)
vpDisplay::displayFrame(Iint, cMo, camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iint, cdMo, camera, 0.2, vpColor::none);
// Display the object frame the world reference frame and the camera
// frame
vpDisplay::displayFrame(Iext, sim.getExternalCameraPosition() * sim.get_fMo() * cMo.inverse(), camera, 0.2,
vpDisplay::displayText(Iint, 20, 20, "Click to stop visual servo", vpColor::red);
std::stringstream ss;
ss << "Loop time: " << t - t_prev << " ms";
vpDisplay::displayText(Iint, 40, 20, ss.str(), vpColor::red);
if (vpDisplay::getClick(Iint, false)) {
stop = true;
}
vpTime::wait(t, sampling_time * 1000); // Wait ms
}
std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
}
if (opt_plot && plotter != nullptr) {
sim.getInternalImage(Iint);
vpDisplay::displayFrame(Iint, cMo, camera, 0.2, vpColor::none);
vpDisplay::displayFrame(Iint, cdMo, camera, 0.2, vpColor::none);
vpDisplay::displayText(Iint, 20, 20, "Click to quit", vpColor::red);
if (vpDisplay::getClick(Iint)) {
stop = true;
}
delete plotter;
}
task.print();
return EXIT_SUCCESS;
}
catch (const vpException &e) {
std::cout << "Catch an exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#elif !(defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
int main()
{
std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
return EXIT_SUCCESS;
}
#else
int main()
{
std::cout << "You do not have X11, or GDI (Graphical Device Interface), or GTK functionalities to display images..."
<< std::endl;
std::cout << "Tip if you are on a unix-like system:" << std::endl;
std::cout << "- Install X11, configure again ViSP using cmake and build again this example" << std::endl;
std::cout << "Tip if you are on a windows-like system:" << std::endl;
std::cout << "- Install GDI, configure again ViSP using cmake and build again this example" << std::endl;
return EXIT_SUCCESS;
}
#endif
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:163
static const vpColor red
Definition: vpColor.h:211
static const vpColor none
Definition: vpColor.h:223
Class that defines a 3D cylinder in the object frame and allows forward projection of a 3D cylinder i...
Definition: vpCylinder.h:99
Display for windows using Direct3D 3rd party. Thus to enable this class Direct3D should be installed....
Definition: vpDisplayD3D.h:101
Display for windows using GDI (available on any windows 32 platform).
Definition: vpDisplayGDI.h:128
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:128
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:128
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void displayFrame(const vpImage< unsigned char > &I, const vpHomogeneousMatrix &cMo, const vpCameraParameters &cam, double size, const vpColor &color=vpColor::none, unsigned int thickness=1, const vpImagePoint &offset=vpImagePoint(0, 0), const std::string &frameName="", const vpColor &textColor=vpColor::black, const vpImagePoint &textOffset=vpImagePoint(15, 15))
static void flush(const vpImage< unsigned char > &I)
static void setWindowPosition(const vpImage< unsigned char > &I, int winx, int winy)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
error that can be emitted by ViSP classes.
Definition: vpException.h:59
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 2D line visual feature which is composed by two parameters that are and ,...
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
static double rad(double deg)
Definition: vpMath.h:127
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:146
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
This class enables real time drawing of 2D or 3D graphics. An instance of the class open a window whi...
Definition: vpPlot.h:109
void initGraph(unsigned int graphNum, unsigned int curveNbr)
Definition: vpPlot.cpp:202
void setLegend(unsigned int graphNum, unsigned int curveNum, const std::string &legend)
Definition: vpPlot.cpp:545
void plot(unsigned int graphNum, unsigned int curveNum, double x, double y)
Definition: vpPlot.cpp:269
void setTitle(unsigned int graphNum, const std::string &title)
Definition: vpPlot.cpp:503
void get_eJe(vpMatrix &eJe) vp_override
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) vp_override
@ CAMERA_FRAME
Definition: vpRobot.h:82
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:378
@ EYEINHAND_L_cVe_eJe
Definition: vpServo.h:162
unsigned int getDimension() const
Definition: vpServo.cpp:364
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:329
void set_cVe(const vpVelocityTwistMatrix &cVe_)
Definition: vpServo.h:1028
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:169
void setLambda(double c)
Definition: vpServo.h:976
void set_eJe(const vpMatrix &eJe_)
Definition: vpServo.h:1091
vpColVector secondaryTask(const vpColVector &de2dt, const bool &useLargeProjectionOperator=false)
Definition: vpServo.cpp:1087
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:132
vpColVector getError() const
Definition: vpServo.h:504
vpColVector computeControlLaw()
Definition: vpServo.cpp:703
@ DESIRED
Definition: vpServo.h:202
Class that defines the simplest robot: a free flying camera.
Implementation of a wire frame simulator. Compared to the vpSimulator class, it does not require thir...
vpHomogeneousMatrix getExternalCameraPosition() const
void setCameraPositionRelObj(const vpHomogeneousMatrix &cMo_)
void getInternalImage(vpImage< unsigned char > &I)
void initScene(const vpSceneObject &obj, const vpSceneDesiredObject &desiredObject)
void setExternalCameraPosition(const vpHomogeneousMatrix &cam_Mf)
void set_fMo(const vpHomogeneousMatrix &fMo_)
vpHomogeneousMatrix get_fMo() const
void setDesiredCameraPosition(const vpHomogeneousMatrix &cdMo_)
void setInternalCameraParameters(const vpCameraParameters &cam)
void setExternalCameraParameters(const vpCameraParameters &cam)
@ CYLINDER
A cylinder of 80cm length and 10cm radius.
void getExternalImage(vpImage< unsigned char > &I)
void display(vpImage< unsigned char > &I, const std::string &title)
Display a gray-scale image.
VISP_EXPORT int wait(double t0, double t)
VISP_EXPORT double measureTimeMs()