Visual Servoing Platform  version 3.6.1 under development (2024-03-28)
servoSimu3D_cdMc_CamVelocity.cpp
1 /****************************************************************************
2  *
3  * ViSP, open source Visual Servoing Platform software.
4  * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  * See the file LICENSE.txt at the root directory of this source
11  * distribution for additional information about the GNU GPL.
12  *
13  * For using ViSP with software that can not be combined with the GNU
14  * GPL, please contact Inria about acquiring a ViSP Professional
15  * Edition License.
16  *
17  * See https://visp.inria.fr for more information.
18  *
19  * This software was developed at:
20  * Inria Rennes - Bretagne Atlantique
21  * Campus Universitaire de Beaulieu
22  * 35042 Rennes Cedex
23  * France
24  *
25  * If you have questions regarding the use of this file, please contact
26  * Inria at visp@inria.fr
27  *
28  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30  *
31  * Description:
32  * Simulation of a 3D visual servoing.
33  *
34 *****************************************************************************/
55 #include <stdio.h>
56 #include <stdlib.h>
57 
58 #include <visp3/core/vpHomogeneousMatrix.h>
59 #include <visp3/core/vpIoTools.h>
60 #include <visp3/core/vpMath.h>
61 #include <visp3/io/vpParseArgv.h>
62 #include <visp3/robot/vpSimulatorCamera.h>
63 #include <visp3/visual_features/vpFeatureThetaU.h>
64 #include <visp3/visual_features/vpFeatureTranslation.h>
65 #include <visp3/vs/vpServo.h>
66 
67 // List of allowed command line options
68 #define GETOPTARGS "h"
69 
70 void usage(const char *name, const char *badparam);
71 bool getOptions(int argc, const char **argv);
72 
81 void usage(const char *name, const char *badparam)
82 {
83  fprintf(stdout, "\n\
84 Simulation of a 3D visual servoing:\n\
85  - eye-in-hand control law,\n\
86  - velocity computed in the camera frame,\n\
87  - without display.\n\
88  \n\
89 SYNOPSIS\n\
90  %s [-h]\n",
91  name);
92 
93  fprintf(stdout, "\n\
94 OPTIONS: Default\n\
95  \n\
96  -h\n\
97  Print the help.\n");
98 
99  if (badparam)
100  fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
101 }
102 
112 bool getOptions(int argc, const char **argv)
113 {
114  const char *optarg_;
115  int c;
116  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
117 
118  switch (c) {
119  case 'h':
120  usage(argv[0], nullptr);
121  return false;
122 
123  default:
124  usage(argv[0], optarg_);
125  return false;
126  }
127  }
128 
129  if ((c == 1) || (c == -1)) {
130  // standalone param or error
131  usage(argv[0], nullptr);
132  std::cerr << "ERROR: " << std::endl;
133  std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
134  return false;
135  }
136 
137  return true;
138 }
139 
140 int main(int argc, const char **argv)
141 {
142 #if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
143  try {
144  // Read the command line options
145  if (getOptions(argc, argv) == false) {
146  return EXIT_FAILURE;
147  }
148 
149  // Log file creation in /tmp/$USERNAME/log.dat
150  // This file contains by line:
151  // - the 6 computed camera velocities (m/s, rad/s) to achieve the task
152  // - the 6 values of s - s*
153  std::string username;
154  // Get the user login name
155  vpIoTools::getUserName(username);
156 
157  // Create a log filename to save velocities...
158  std::string logdirname;
159 #if defined(_WIN32)
160  logdirname = "C:/temp/" + username;
161 #else
162  logdirname = "/tmp/" + username;
163 #endif
164  // Test if the output path exist. If no try to create it
165  if (vpIoTools::checkDirectory(logdirname) == false) {
166  try {
167  // Create the dirname
168  vpIoTools::makeDirectory(logdirname);
169  }
170  catch (...) {
171  std::cerr << std::endl << "ERROR:" << std::endl;
172  std::cerr << " Cannot create " << logdirname << std::endl;
173  return EXIT_FAILURE;
174  }
175  }
176  std::string logfilename;
177  logfilename = logdirname + "/log.dat";
178 
179  // Open the log file name
180  std::ofstream flog(logfilename.c_str());
181 
182  vpServo task;
183  vpSimulatorCamera robot;
184 
185  std::cout << std::endl;
186  std::cout << "-------------------------------------------------------" << std::endl;
187  std::cout << " Test program for vpServo " << std::endl;
188  std::cout << " Eye-in-hand task control, velocity computed in the camera frame" << std::endl;
189  std::cout << " Simulation " << std::endl;
190  std::cout << " task : 3D visual servoing " << std::endl;
191  std::cout << "-------------------------------------------------------" << std::endl;
192  std::cout << std::endl;
193 
194  // Sets the initial camera location
195  vpPoseVector c_r_o( // Translation tx,ty,tz
196  0.1, 0.2, 2,
197  // ThetaU rotation
198  vpMath::rad(20), vpMath::rad(10), vpMath::rad(50));
199 
200  // From the camera pose build the corresponding homogeneous matrix
201  vpHomogeneousMatrix cMo(c_r_o);
202 
203  // Set the robot initial position
204  vpHomogeneousMatrix wMc, wMo;
205  robot.getPosition(wMc);
206  wMo = wMc * cMo; // Compute the position of the object in the world frame
207 
208  // Sets the desired camera location
209  vpPoseVector cd_r_o( // Translation tx,ty,tz
210  0, 0, 1,
211  // ThetaU rotation
212  vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
213  // From the camera desired pose build the corresponding homogeneous matrix
214  vpHomogeneousMatrix cdMo(cd_r_o);
215 
216  // Compute the homogeneous transformation from the desired camera position
217  // to the initial one
218  vpHomogeneousMatrix cdMc;
219  cdMc = cdMo * cMo.inverse();
220 
221  // Build the current visual features s = (c*tc, thetaU_c*Rc)^T
223  vpFeatureThetaU tu(vpFeatureThetaU::cdRc); // current feature
224  t.buildFrom(cdMc);
225  tu.buildFrom(cdMc);
226 
227  // Sets the desired rotation (always zero !) since s is the
228  // rotation that the camera has to achieve. Here s* = (0, 0)^T
230  vpFeatureThetaU tud(vpFeatureThetaU::cdRc); // desired feature
231 
232  // Define the task
233  // - we want an eye-in-hand control law
234  // - the robot is controlled in the camera frame
236  // - we use here the interaction matrix computed with the
237  // current features
239 
240  // Add the current and desired visual features
241  task.addFeature(t, td); // 3D translation
242  task.addFeature(tu, tud); // 3D rotation
243 
244  // - set the constant gain to 1.0
245  task.setLambda(1);
246 
247  // Display task information
248  task.print();
249 
250  unsigned int iter = 0;
251  // Start the visual servoing loop. We stop the servo after 200 iterations
252  while (iter++ < 200) {
253  std::cout << "-----------------------------------" << iter << std::endl;
254  vpColVector v;
255 
256  // get the robot position
257  robot.getPosition(wMc);
258  // Compute the position of the object frame in the camera frame
259  cMo = wMc.inverse() * wMo;
260 
261  // new displacement to achieve
262  cdMc = cdMo * cMo.inverse();
263 
264  // Update the current visual features
265  t.buildFrom(cdMc);
266  tu.buildFrom(cdMc);
267 
268  // Compute the control law
269  v = task.computeControlLaw();
270 
271  // Display task information
272  if (iter == 1)
273  task.print();
274 
275  // Send the camera velocity to the controller
277 
278  // Retrieve the error
279  std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
280 
281  // Save log
282  flog << v.t() << " " << (task.getError()).t() << std::endl;
283  }
284  // Display task information
285  task.print();
286 
287  // Close the log file
288  flog.close();
289  return EXIT_SUCCESS;
290  }
291  catch (const vpException &e) {
292  std::cout << "Catch a ViSP exception: " << e << std::endl;
293  return EXIT_FAILURE;
294  }
295 #else
296  (void)argc;
297  (void)argv;
298  std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
299  return EXIT_SUCCESS;
300 #endif
301 }
Implementation of column vector and the associated operations.
Definition: vpColVector.h:163
vpRowVector t() const
error that can be emitted by ViSP classes.
Definition: vpException.h:59
Class that defines a 3D visual feature from a axis/angle parametrization that represent the rotatio...
Class that defines the translation visual feature .
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
void buildFrom(const vpTranslationVector &t, const vpRotationMatrix &R)
static bool checkDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:818
static std::string getUserName()
Definition: vpIoTools.cpp:711
static void makeDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:967
static double rad(double deg)
Definition: vpMath.h:127
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
Implementation of a pose vector and operations on poses.
Definition: vpPoseVector.h:189
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel) vp_override
@ CAMERA_FRAME
Definition: vpRobot.h:82
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:378
@ EYEINHAND_CAMERA
Definition: vpServo.h:155
void addFeature(vpBasicFeature &s_cur, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:329
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:169
void setLambda(double c)
Definition: vpServo.h:976
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:132
vpColVector getError() const
Definition: vpServo.h:504
vpColVector computeControlLaw()
Definition: vpServo.cpp:703
@ CURRENT
Definition: vpServo.h:196
Class that defines the simplest robot: a free flying camera.