ViSP  2.6.2
servoAfma4Point2DArtVelocity.cpp
1 /****************************************************************************
2  *
3  * $Id: servoAfma4Point2DArtVelocity.cpp 3616 2012-03-09 14:31:52Z fspindle $
4  *
5  * This file is part of the ViSP software.
6  * Copyright (C) 2005 - 2012 by INRIA. All rights reserved.
7  *
8  * This software is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * ("GPL") version 2 as published by the Free Software Foundation.
11  * See the file LICENSE.txt at the root directory of this source
12  * distribution for additional information about the GNU GPL.
13  *
14  * For using ViSP with software that can not be combined with the GNU
15  * GPL, please contact INRIA about acquiring a ViSP Professional
16  * Edition License.
17  *
18  * See http://www.irisa.fr/lagadic/visp/visp.html for more information.
19  *
20  * This software was developed at:
21  * INRIA Rennes - Bretagne Atlantique
22  * Campus Universitaire de Beaulieu
23  * 35042 Rennes Cedex
24  * France
25  * http://www.irisa.fr/lagadic
26  *
27  * If you have questions regarding the use of this file, please contact
28  * INRIA at visp@inria.fr
29  *
30  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
31  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
32  *
33  *
34  * Description:
35  * tests the control law
36  * eye-in-hand control
37  * velocity computed in articular
38  *
39  * Authors:
40  * Eric Marchand
41  * Fabien Spindler
42  *
43  *****************************************************************************/
44 
68 #include <visp/vpConfig.h>
69 #include <visp/vpDebug.h> // Debug trace
70 #include <stdio.h>
71 #include <iostream>
72 #include <fstream>
73 #include <sstream>
74 #include <stdlib.h>
75 #if (defined (VISP_HAVE_AFMA4) && defined (VISP_HAVE_DC1394_2))
76 
77 #include <visp/vp1394TwoGrabber.h>
78 #include <visp/vpImage.h>
79 #include <visp/vpImagePoint.h>
80 #include <visp/vpDisplay.h>
81 #include <visp/vpDisplayX.h>
82 
83 #include <visp/vpMath.h>
84 #include <visp/vpHomogeneousMatrix.h>
85 #include <visp/vpFeaturePoint.h>
86 #include <visp/vpPoint.h>
87 #include <visp/vpServo.h>
88 #include <visp/vpFeatureBuilder.h>
89 #include <visp/vpRobotAfma4.h>
90 #include <visp/vpIoTools.h>
91 
92 // Exception
93 #include <visp/vpException.h>
94 #include <visp/vpMatrixException.h>
95 #include <visp/vpServoDisplay.h>
96 
97 #include <visp/vpDot.h>
98 
99 int
100 main()
101 {
102  // Log file creation in /tmp/$USERNAME/log.dat
103  // This file contains by line:
104  // - the 6 computed joint velocities (m/s, rad/s) to achieve the task
105  // - the 6 mesured joint velocities (m/s, rad/s)
106  // - the 6 mesured joint positions (m, rad)
107  // - the 2 values of s - s*
108  std::string username;
109  // Get the user login name
110  vpIoTools::getUserName(username);
111 
112  // Create a log filename to save velocities...
113  std::string logdirname;
114  logdirname ="/tmp/" + username;
115 
116  // Test if the output path exist. If no try to create it
117  if (vpIoTools::checkDirectory(logdirname) == false) {
118  try {
119  // Create the dirname
120  vpIoTools::makeDirectory(logdirname);
121  }
122  catch (...) {
123  std::cerr << std::endl
124  << "ERROR:" << std::endl;
125  std::cerr << " Cannot create " << logdirname << std::endl;
126  exit(-1);
127  }
128  }
129  std::string logfilename;
130  logfilename = logdirname + "/log.dat";
131 
132  // Open the log file name
133  std::ofstream flog(logfilename.c_str());
134 
135  try {
136  // vpRobotAfma4 robot ;
137  vpRobotAfma4 robot ;
138 
139  vpServo task ;
140 
142 
146  g.open(I) ;
147 
148  g.acquire(I) ;
149 
150  vpDisplayX display(I,100,100,"testDisplayX.cpp ") ;
151  vpTRACE(" ") ;
152 
153  vpDisplay::display(I) ;
154  vpDisplay::flush(I) ;
155  // exit(1) ;
156 
157  std::cout << std::endl ;
158  std::cout << "-------------------------------------------------------" << std::endl ;
159  std::cout << " Test program for vpServo " <<std::endl ;
160  std::cout << " Eye-in-hand task control, velocity computed in the joint space" << std::endl ;
161  std::cout << " Use of the Afma4 robot " << std::endl ;
162  std::cout << " task : servo a point " << std::endl ;
163  std::cout << "-------------------------------------------------------" << std::endl ;
164  std::cout << std::endl ;
165 
166 
167  vpDot dot ;
168 
169  std::cout << "Click on a dot..." << std::endl;
170  dot.initTracking(I) ;
171 
172  vpImagePoint cog = dot.getCog();
173 
175  vpDisplay::flush(I);
176 
177  vpCameraParameters cam ;
178  // Update camera parameters
179  //robot.getCameraParameters (cam, I);
180 
181  vpTRACE("sets the current position of the visual feature ") ;
182  vpFeaturePoint p ;
183  vpFeatureBuilder::create(p,cam, dot) ; //retrieve x,y and Z of the vpPoint structure
184 
185  p.set_Z(1) ;
186  vpTRACE("sets the desired position of the visual feature ") ;
187  vpFeaturePoint pd ;
188  pd.buildFrom(0,0,1) ;
189 
190  vpTRACE("define the task") ;
191  vpTRACE("\t we want an eye-in-hand control law") ;
192  vpTRACE("\t articular velocity are computed") ;
195 
196 
197  vpTRACE("Set the position of the camera in the end-effector frame ") ;
198  vpHomogeneousMatrix cMe ;
199  // robot.get_cMe(cMe) ;
200 
202  robot.get_cVe(cVe) ;
203  std::cout << cVe <<std::endl ;
204  task.set_cVe(cVe) ;
205 
206  // vpDisplay::getClick(I) ;
207  vpTRACE("Set the Jacobian (expressed in the end-effector frame)") ;
208  vpMatrix eJe ;
209  robot.get_eJe(eJe) ;
210  task.set_eJe(eJe) ;
211 
212 
213  vpTRACE("\t we want to see a point on a point..") ;
214  std::cout << std::endl ;
215  task.addFeature(p,pd) ;
216 
217  vpTRACE("\t set the gain") ;
218  task.setLambda(0.8) ;
219 
220  vpTRACE("Display task information " ) ;
221  task.print() ;
222 
224 
225  std::cout << "\nHit CTRL-C to stop the loop...\n" << std::flush;
226  for ( ; ; ) {
227  // Acquire a new image from the camera
228  g.acquire(I) ;
229 
230  // Display this image
231  vpDisplay::display(I) ;
232 
233  // Achieve the tracking of the dot in the image
234  dot.track(I) ;
235 
236  // Get the cog of the dot
237  cog = dot.getCog();
238 
239  // Display a green cross at the center of gravity position in the image
241 
242 
243  // Update the point feature from the dot location
244  vpFeatureBuilder::create(p, cam, dot);
245 
246  // Get the jacobian of the robot
247  robot.get_eJe(eJe) ;
248  // Update this jacobian in the task structure. It will be used to compute
249  // the velocity skew (as an articular velocity)
250  // qdot = -lambda * L^+ * cVe * eJe * (s-s*)
251  task.set_eJe(eJe) ;
252 
253  // std::cout << (vpMatrix)cVe*eJe << std::endl ;
254 
255  vpColVector v ;
256  // Compute the visual servoing skew vector
257  v = task.computeControlLaw() ;
258 
259  // Display the current and desired feature points in the image display
260  vpServoDisplay::display(task, cam, I) ;
261 
262  // Apply the computed joint velocities to the robot
264 
265  // Save velocities applied to the robot in the log file
266  // v[0], v[1], v[2] correspond to joint translation velocities in m/s
267  // v[3], v[4], v[5] correspond to joint rotation velocities in rad/s
268  flog << v[0] << " " << v[1] << " " << v[2] << " "
269  << v[3] << " " << v[4] << " " << v[5] << " ";
270 
271  // Get the measured joint velocities of the robot
272  vpColVector qvel;
274  // Save measured joint velocities of the robot in the log file:
275  // - qvel[0], qvel[1], qvel[2] correspond to measured joint translation
276  // velocities in m/s
277  // - qvel[3], qvel[4], qvel[5] correspond to measured joint rotation
278  // velocities in rad/s
279  flog << qvel[0] << " " << qvel[1] << " " << qvel[2] << " "
280  << qvel[3] << " " << qvel[4] << " " << qvel[5] << " ";
281 
282  // Get the measured joint positions of the robot
283  vpColVector q;
285  // Save measured joint positions of the robot in the log file
286  // - q[0], q[1], q[2] correspond to measured joint translation
287  // positions in m
288  // - q[3], q[4], q[5] correspond to measured joint rotation
289  // positions in rad
290  flog << q[0] << " " << q[1] << " " << q[2] << " "
291  << q[3] << " " << q[4] << " " << q[5] << " ";
292 
293  // Save feature error (s-s*) for the feature point. For this feature
294  // point, we have 2 errors (along x and y axis). This error is expressed
295  // in meters in the camera frame
296  flog << task.getError() << std::endl;
297  vpDisplay::flush(I) ;
298 
299  // vpTRACE("\t\t || s - s* || = %f ", ( task.getError() ).sumSquare()) ;
300  }
301 
302  flog.close() ; // Close the log file
303 
304  vpTRACE("Display task information " ) ;
305  task.print() ;
306  task.kill();
307  return 0;
308  }
309  catch (...)
310  {
311  flog.close() ; // Close the log file
312  vpERROR_TRACE(" Test failed") ;
313  return 0;
314  }
315 }
316 
317 
318 #else
319 int
320 main()
321 {
322  vpERROR_TRACE("You do not have an afma4 robot or a firewire framegrabber connected to your computer...");
323 }
324 #endif
Definition of the vpMatrix class.
Definition: vpMatrix.h:96
static void display(vpServo &s, const vpCameraParameters &cam, vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
static bool checkDirectory(const char *dirname)
Definition: vpIoTools.cpp:289
The class provides a data structure for the homogeneous matrices as well as a set of operations on th...
#define vpERROR_TRACE
Definition: vpDebug.h:379
#define vpTRACE
Definition: vpDebug.h:401
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &velocity)
Define the X11 console to display images.
Definition: vpDisplayX.h:152
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, const unsigned int select=vpBasicFeature::FEATURE_ALL)
create a new ste of two visual features
Definition: vpServo.cpp:444
void setLambda(double _lambda)
set the gain lambda
Definition: vpServo.h:250
void track(const vpImage< unsigned char > &I)
Definition: vpDot.cpp:787
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
static const vpColor green
Definition: vpColor.h:168
void acquire(vpImage< unsigned char > &I)
void set_cVe(vpVelocityTwistMatrix &_cVe)
Definition: vpServo.h:227
static void flush(const vpImage< unsigned char > &I)
Definition: vpDisplay.cpp:1964
static void makeDirectory(const char *dirname)
Definition: vpIoTools.cpp:358
void open(vpImage< unsigned char > &I)
vpImagePoint getCog() const
Definition: vpDot.h:249
void kill()
destruction (memory deallocation if required)
Definition: vpServo.cpp:177
Initialize the velocity controller.
Definition: vpRobot.h:70
vpColVector getError() const
Definition: vpServo.h:298
vpColVector computeControlLaw()
compute the desired control law
Definition: vpServo.cpp:883
void get_cVe(vpVelocityTwistMatrix &cVe)
void getPosition(const vpRobot::vpControlFrameType frame, vpColVector &position)
static void display(const vpImage< unsigned char > &I)
Definition: vpDisplay.cpp:186
void set_eJe(vpMatrix &_eJe)
Definition: vpServo.h:235
virtual void displayCross(const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)=0
Generic class defining intrinsic camera parameters.
static std::string getUserName()
Definition: vpIoTools.cpp:136
Class that consider the particular case of twist transformation matrix that allows to transform a vel...
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Set the type of the interaction matrix (current, mean, desired, user).
Definition: vpServo.cpp:509
void buildFrom(const double x, const double y, const double Z)
void get_eJe(vpMatrix &eJe)
vpRobot::vpRobotStateType setRobotState(vpRobot::vpRobotStateType newState)
Class that provides a data structure for the column vectors as well as a set of operations on these v...
Definition: vpColVector.h:72
void getVelocity(const vpRobot::vpControlFrameType frame, vpColVector &velocity)
void setFramerate(vp1394TwoFramerateType fps)
Control of Irisa's cylindrical robot named Afma4.
Definition: vpRobotAfma4.h:181
void setVideoMode(vp1394TwoVideoModeType videomode)
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:258
This tracker is meant to track a dot (connex pixels with same gray level) on a vpImage.
Definition: vpDot.h:80
Class for firewire ieee1394 video devices using libdc1394-2.x api.
void set_Z(const double Z)
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:92
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class required to compute the visual servoing control law.
Definition: vpServo.h:150
void initTracking(const vpImage< unsigned char > &I)
Definition: vpDot.cpp:638
void setServo(vpServoType _servo_type)
Choice of the visual servoing control law.
Definition: vpServo.cpp:214
static const vpColor blue
Definition: vpColor.h:171